9 research outputs found

    On the Performance of Mismatched Data Detection in Large MIMO Systems

    Full text link
    We investigate the performance of mismatched data detection in large multiple-input multiple-output (MIMO) systems, where the prior distribution of the transmit signal used in the data detector differs from the true prior. To minimize the performance loss caused by this prior mismatch, we include a tuning stage into our recently-proposed large MIMO approximate message passing (LAMA) algorithm, which allows us to develop mismatched LAMA algorithms with optimal as well as sub-optimal tuning. We show that carefully-selected priors often enable simpler and computationally more efficient algorithms compared to LAMA with the true prior while achieving near-optimal performance. A performance analysis of our algorithms for a Gaussian prior and a uniform prior within a hypercube covering the QAM constellation recovers classical and recent results on linear and non-linear MIMO data detection, respectively.Comment: Will be presented at the 2016 IEEE International Symposium on Information Theor

    Large System Analysis of Box-Relaxation in Correlated Massive MIMO Systems Under Imperfect CSI (Extended Version)

    Full text link
    In this paper, we study the mean square error (MSE) and the bit error rate (BER) performance of the box-relaxation decoder in massive multiple-input-multiple-output (MIMO) systems under the assumptions of imperfect channel state information (CSI) and receive-side channel correlation. Our analysis assumes that the number of transmit and receive antennas (nn,and mm) grow simultaneously large while their ratio remains fixed. For simplicity of the analysis, we consider binary phase shift keying (BPSK) modulated signals. The asymptotic approximations of the MSE and BER enable us to derive the optimal power allocation scheme under MSE/BER minimization. Numerical simulations suggest that the asymptotic approximations are accurate even for small nn and mm. They also show the important role of the box constraint in mitigating the so called double descent phenomenon

    Symbol Error Rate Performance of Box-relaxation Decoders in Massive MIMO

    Get PDF
    The maximum-likelihood (ML) decoder for symbol detection in large multiple-input multiple-output wireless communication systems is typically computationally prohibitive. In this paper, we study a popular and practical alternative, namely the Box-relaxation optimization (BRO) decoder, which is a natural convex relaxation of the ML. For iid real Gaussian channels with additive Gaussian noise, we obtain exact asymptotic expressions for the symbol error rate (SER) of the BRO. The formulas are particularly simple, they yield useful insights, and they allow accurate comparisons to the matched-filter bound (MFB) and to the zero-forcing decoder. For BPSK signals the SER performance of the BRO is within 3dB of the MFB for square systems, and it approaches the MFB as the number of receive antennas grows large compared to the number of transmit antennas. Our analysis further characterizes the empirical density function of the solution of the BRO, and shows that error events for any fixed number of symbols are asymptotically independent. The fundamental tool behind the analysis is the convex Gaussian min-max theorem

    A Precise Analysis of PhaseMax in Phase Retrieval

    Get PDF
    Recovering an unknown complex signal from the magnitude of linear combinations of the signal is referred to as phase retrieval. We present an exact performance analysis of a recently proposed convex-optimization-formulation for this problem, known as PhaseMax. Standard convex-relaxation-based methods in phase retrieval resort to the idea of “lifting” which makes them computationally inefficient, since the number of unknowns is effectively squared. In contrast, PhaseMax is a novel convex relaxation that does not increase the number of unknowns. Instead it relies on an initial estimate of the true signal which must be externally provided. In this paper, we investigate the required number of measurements for exact recovery of the signal in the large system limit and when the linear measurement matrix is random with iid standard normal entries. If n denotes the dimension of the unknown complex signal and m the number of phaseless measurements, then in the large system limit, m/n > 4/cos^2(θ) measurements is necessary and sufficient to recover the signal with high probability, where θ is the angle between the initial estimate and the true signal. Our result indicates a sharp phase transition in the asymptotic regime which matches the empirical result in numerical simulations

    Structured Signal Recovery from Nonlinear Measurements with Applications in Phase Retrieval and Linear Classification

    Get PDF
    Nonlinear models are widely used in signal processing, statistics, and machine learning to model real-world applications. A popular class of such models is the single-index model where the response variable is related to a linear combination of dependent variables through a link function. In other words, if x ∈ Rp denotes the input signal, the posterior mean of the generated output y has the form, E[y|x] = ρ(xTw), where ρ :R → R is a known function (referred to as the link function), and w ∈ Rp is the vector of unknown parameters. When ρ(•) is invertible, this class of models is called generalized linear models (GLMs). GLMs are commonly used in statistics and are often viewed as flexible generalizations of linear regression. Given n measurements (samples) from this model, D = {(xi, yi) | 1 ≤q i ≤ n}, the goal is to estimate the parameter vector w. While the model parameters are assumed to be unknown, in many applications these parameters follow certain structures (sparse, low-rank, group-sparse, etc.) The knowledge on this structure can be used to form more accurate estimators. The main contribution of this thesis is to provide a precise performance analysis for convex optimization programs that are used for parameter estimation in two important classes of single-index models. These classes are: (1) phase retrieval in signal processing, and (2) binary classification in statistical learning. The first class of models studied in this thesis is the phase retrieval problem, where the goal is to recover a discrete complex-valued signal from amplitudes of its linear combinations. Methods based on convex optimization have recently gained significant attentions in the literature. The conventional convex-optimization-based methods resort to the idea of lifting which makes them computationally inefficient. In addition to providing an analysis of the recovery threshold for the semidefinite-programming-based methods, this thesis studies the performance of a new convex relaxation for the phase retrieval problem, known as phasemax, which is computationally more efficient as it does not lift the signal to higher dimensions. Furthermore, to address the case of structured signals, regularized phasemax is introduced along with a precise characterization of the conditions for its perfect recovery in the asymptotic regime. The next important application studied in this thesis is the binary classification in statistical learning. While classification models have been studied in the literature since 1950's, the understanding of their performance has been incomplete until very recently. Inspired by the maximum likelihood (ML) estimator in logistic models, we analyze a class of optimization programs that attempts to find the model parameters by minimizing an objective that consists of a loss function (which is often inspired by the ML estimator) and an additive regularization term that enforces our knowledge on the structure. There are two operating regimes for this problem depending on the separability of the training data set D. In the asymptotic regime, where the number of samples and the number of parameters grow to infinity, a phase transition phenomenon is demonstrated that happens at a certain over-parameterization ratio. We compute this phase transition for the setting where the underlying data is drawn from a Gaussian distribution. In the case where the data is non-separable, the ML estimator is well-defined, and its attributes have been studied in the classical statistics. However, these classical results fail to provide reasonable estimate in the regime where the number of data points is proportional to the number of samples. One contribution of this thesis is to provide an exact analysis on the performance of the regularized logistic regression when the number of training data is proportional to the number of samples. When the data is separable (a.k.a. the interpolating regime), there exist multiple linear classifiers that perfectly fit the training data. In this regime, we introduce and analyze the performance of "extended margin maximizers" (EMMs). Inspired by the max-margin classifier, EMM classifiers simultaneously consider maximizing the margin and the structure of the parameter. Lastly, we discuss another generalization to the max-margin classifier, referred to as the robust max-margin classifier, that takes into account the perturbations by an adversary. It is shown that for a broad class of loss functions, gradient descent iterates (with proper step sizes) converge to the robust max-margin classifier.</p

    Universality Laws and Performance Analysis of the Generalized Linear Models

    Get PDF
    In the past couple of decades, non-smooth convex optimization has emerged as a powerful tool for the recovery of structured signals (sparse, low rank, etc.) from noisy linear or non-linear measurements in a variety of applications in genomics, signal processing, wireless communications, machine learning, etc.. Taking advantage of the particular structure of the unknown signal of interest is critical since in most of these applications, the dimension p of the signal to be estimated is comparable, or even larger than the number of observations n. With the advent of Compressive Sensing there has been a very large number of theoretical results that study the estimation performance of non-smooth convex optimization in such a high-dimensional setting. A popular approach for estimating an unknown signal β₀ ϵ ℝᵖ in a generalized linear model, with observations y = g(Xβ₀) ϵ ℝⁿ, is via solving the estimator β&#x0302; = arg minβ L(y, Xβ + λf(β). Here, L(•,•) is a loss function which is convex with respect to its second argument, and f(•) is a regularizer that enforces the structure of the unknown β₀. We first analyze the generalization error performance of this estimator, for the case where the entries of X are drawn independently from real standard Gaussian distribution. The precise nature of our analysis permits an accurate performance comparison between different instances of these estimators, and allows to optimally tune the hyperparameters based on the model parameters. We apply our result to some of the most popular cases of generalized linear models, such as M-estimators in linear regression, logistic regression and generalized margin maximizers in binary classification problems, and Poisson regression in count data models. The key ingredient of our proof is the Convex Gaussian Min-max Theorem (CGMT), which is a tight version of the Gaussian comparison inequality proved by Gordon in 1988. Unfortunately, having real iid entries in the features matrix X is crucial in this theorem, and it cannot be naturally extended to other cases. But for some special cases, we prove some universality properties and indirectly extend these results to more general designs of the features matrix X, where the entries are not necessarily real, independent, or identically distributed. This extension, enables us to analyze problems that CGMT was incapable of, such as models with quadratic measurements, phase-lift in phase retrieval, and data recovery in massive MIMO, and help us settle a few long standing open problems in these areas.</p
    corecore