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Abstract—Recovering an unknown complex signal from the
magnitude of linear combinations of the signal is referred to
as phase retrieval. We present an exact performance analysis
of a recently proposed convex-optimization-formulation for this
problem, known as PhaseMax. Standard convex-relaxation-based
methods in phase retrieval resort to the idea of ”lifting” which
makes them computationally inefficient, since the number of
unknowns is effectively squared. In contrast, PhaseMax is a
novel convex relaxation that does not increase the number of
unknowns. Instead it relies on an initial estimate of the true
signal which must be externally provided. In this paper, we
investigate the required number of measurements for exact
recovery of the signal in the large system limit and when the
linear measurement matrix is random with iid standard normal
entries. If n denotes the dimension of the unknown complex
signal and m the number of phaseless measurements, then in the
large system limit, m

n
>

4
cos2(θ)

measurements is necessary and

sufficient to recover the signal with high probability, where θ is
the angle between the initial estimate and the true signal. Our
result indicates a sharp phase transition in the asymptotic regime
which matches the empirical result in numerical simulations.

I. INTRODUCTION

The fundamental problem of recovering a signal from

magnitude-only measurements is known as phase retrieval.

This problem has a rich history and occurs in many areas in

engineering and applied physics such as astronomical imaging

[1], X-ray crystallography [2], medical imaging [3], and optics

[4]. In most of these cases, measuring the phase is either

expensive or even infeasible. For instance, in some optical set-

tings, detection devices like CCD cameras and photosensitive

films cannot measure the phase of a light wave and instead

measure the photon flux.

Reconstructing a signal from magnitude-only measurements

is generally very difficult due to loss of important phase

information. Therefore, phase retrieval faces fundamental the-

oretical and algorithmic challenges and a variety of methods

were suggested [5]. Convex methods have recently gained

significant attention to solve the phase retrieval problem. These

methods are mainly based on semidefinite programming by

linearizing the resulting quadratic constraints using the idea of

lifting [6]–[16]. Due to the convex nature of their formulation,

these algorithms usually have rigorous theoretical guaran-

tees. However, semidefinite relaxation squares the number

of unknowns which makes these algorithms computationally

complex, especially in large systems. This caveat makes these

approaches intractable in real-world applications.

Introduced in two independent works [17], [18], PhaseMax

is a recently proposed convex formulation for the phase

retrieval problem in the original n−dimensional parameter

space. This method maximizes a linear functional over a

convex feasible set. The constrained set in this optimization

is obtained by relaxing the non-convex equality constraints

in the original phase retrieval problem to convex inequality

constraints. To form the objective function, PhaseMax relies on

an initial estimate of the true signal which must be externally

provided.

The simple formulation of the PhaseMax method makes

it appealing for practical applications. In addition, existing

theoretical analysis indicates this method achieves perfect re-

covery for a nearly optimal number of random measurements.

The analysis in [17]–[19] suggests that m > Cn, where C
is a constant that depends on the quality of initial estimate

(xinit), is the sufficient number of measurements for perfect

signal reconstruction when the measurement vectors are drawn

independently from the Gaussian distribution. The exact phase

transition threshold, i.e. the exact value of the constant C, for

the real PhaseMax has been recently derived in [20], [21].

However, for the practical case of complex signals, previous

results could only provide an upper bound on C.

In this paper, we characterize the phase transition regimes

for the perfect signal recovery in the PhaseMax algorithm.

Our result is asymptotic and assumes that the measurement

vectors are derived independently from Gaussian distribution.

To the extent of our knowledge, this is the first work that

computes the exact phase transition bound of the (complex-

valued) PhaseMax in phase retrieval.

In our analysis, we utilize the recently developed Convex

Gaussian Min-max Theorem (CGMT) [22] which uses Gaus-

sian process methods. CGMT has been successfully applied

in a number of different problems including the performance

analysis of structured signal recovery in M-estimators [22],

[23], massive MIMO [24], [25] and etc. CGMT has been also

used by Dhifallah et. al. [20] to analyze the real version of

the PhaseMax. But unfortunately, the complex case does not

directly fit into the framework of CGMT. Therefore, in this

paper we introduce a secondary optimization that provably

has the same phase transition bounds as PhaseMax and that

also can be analyzed by CGMT.

The organization of the paper is as follows. In section II

we introduce the main notations and mathematically setup the

problem. In section III, we present our main result followed

by discussions and the result of numerical simulations. Finally,

section IV includes an outline of the proof of the main

theorem.
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II. PROBLEM SETUP

A. Notations

We gather here the basic notations that are used throughout

this paper. We reserve the letter j for the complex unit. For a

complex scalar x ∈ C, xRe and xIm correspond to the real and

imaginary parts of x, respectively, and |x| =
√

x2Re + x2Im .

N (µ, σ2) denotes real Gaussian distribution with mean µ and

variance σ2. Similarly, NC(µ, σ
2) refers to a complex Gaussian

distribution with real and imaginary parts drawn independently

from N (µRe, σ
2/2) and N (µIm, σ

2/2), respectively. R(2σ2)
denotes the Rayleigh distribution with second moment equal

to 2σ2. X ∼ pX implies that the random variable X has a

density pX . Bold lower letters are reserved for vectors and

upper letters are used for matrices. For a vector v, vi denotes

its ith entry and ||v|| is its l2 norm. (·)⋆ is used to denote

the conjugate transpose. For a complex vector v, vRe and vIm

denotes its real and complex parts, respectively. Also, v(k : l)
is a column vector consisting of entries with index from k to

l of v. We use caligraphy letters for sets. For set S, cone(S)
is the closed conical hull of S.

B. Setup

Let x0 ∈ Cn denote the underlying signal. We consider the

phase retrieval problem with the goal of recovering x0 from

m magnitude-only measurements of the form,

bi = |a⋆ix0|, i = 1, . . . ,m. (1)

Throughout this paper we assume that {ai ∈ Cn}mi=1 is

the set of known measurement vectors where the ai’s are

independently drawn from the complex Gaussian distribution

with mean zero and covariance matrix I.

As mentioned earlier, the PhaseMax method relies on an

initial estimate of the true signal. xinit ∈ Cn is used to

represent this initial guess. We assume both x0 and xinit are

independent of all the measurement vectors. The PhaseMax

algorithm provides a convex formulation of the phase retrieval

problem by simply relaxing the equality constraints in (1) into

convex inequality constraints. This results in the following

convex optimization problem:

x̂ = arg max
x∈Cn

Re{xinit
⋆ x}

subject to: |a⋆i x| ≤ bi , 1 ≤ i ≤ m.
(2)

This optimization searches for a feasible vector that posses the

most real correlation with xinit. Note that because of the global

phase ambiguity of the measurements in (1), we can estimate

x0 up to a global phase. Therefore, we define the following

performance measure for the PhaseMax method,

D(x̂,x0) = min
φ∈[−π,π]

‖x̂ejφ − x0‖

‖x0‖
. (3)

Under this setting, a perfect recovery of x0 means D(x̂,x0) =
0. In this paper we investigate the necessary and sufficient

conditions under which the optimization program (2) perfectly

recovers the true signal.

III. MAIN RESULT

In this section, we present the main result of the paper which

provides us with the necessary and sufficient number of mea-

surements for the perfect recovery of the PhaseMax method in

(2) under different scenarios. Our result is asymptotic which

assumes a fixed oversampling ratio δ := m
n ∈ [0,∞), while

n→ ∞. In theorem III.1, we introduce δrec which depends on

the problem parameters and prove that the condition δ > δrec,

is necessary and sufficient for perfect recovery. Our result

reveals significant dependence between δrec and the quality

of the initial guess. We use the following similarity measure

to quantify the caliber of the initial estimate:

ρinit := max
0≤φ<2π

Re{ejφ x⋆
init x0}

||x0|| ||xinit||
=

|x⋆
init x0|

||x0|| ||xinit||
. (4)

Note that the multiplication by a unit amplitude scalar in the

above definition is due to the global phase ambiguity of the

phase retrieval solution (the true phase of x0 is dissolved

in the absolute value in (1)). Therefore, for convenience

we assume both xinit and x0 are aligned unit norm vectors

(||x0|| = ||xinit|| = 1), which results in ρinit = x⋆
init x0. We

also define θ as the angle between xinit and x0, and therefore,

ρinit = cos θ. We now present the main result of the paper

which characterizes the phase transition regimes of PhaseMax

for perfect recovery, in terms of δ and ρinit.

Theorem III.1. Consider the PhaseMax problem defined in

section II. For a fixed oversampling ratio δ = m
n > 4, the

optimization program (2) perfectly recovers the true signal (in

the sense that limn→∞ P(D(x̂,x0) > ǫ) = 0, for any fixed

ǫ > 0) if and only if,

δ > δrec :=
4

cos2 θ
=

4

ρ2init

, (5)

where ρinit is defined in (4).

Theorem III.1 establishes a sharp phase transition behavior

for the performance of PhaseMax. The inequality (5) can also

be rewritten in terms of θ (or ρinit) when the oversampling

ratio, δ, is fixed,

ρinit = cos θ >

√

4

δ
. (6)

The proof of Theorem III.1 consists of two main steps.

First, we introduce a real optimization program with 2n − 1
variables and prove that it has the same phase transition

bounds as PhaseMax in (2). The point of this step is that

this new real optimization is especially built in a way that its

performance can be precisely analyzed using well known tools

like CGMT. Therefore, the next step would be to apply the

CGMT framework to the new real optimization and to derive

its phase transition bounds. We postpone a detailed version of

the proof to section IV.

Remark 1. The condition δ > 4 is proven to be fundamentally

necessary for the phase retrieval problem under generic mea-

surements to have a unique solution [26]. This is consistent



with Theorem III.1 where you can observe that even in the best

scenario where xinit is aligned with x0, we still need m > 4n
measurements for PhaseMax to have x0 as the solution. On the

other hand, in the case where xinit carries no information about

x0 (xinit is orthogonal to x0), recovery of x0 by PhaseMax is

not guaranteed regardless of the number of measurements.

Remark 2. It is shown in the work of Goldstein et. al. [17]

that δ > 4
1−2θ/π is sufficient for perfect recovery of x0. This

bound is compared to our result in Fig. 1 which shows phase

transition regions of PhaseMax derived from empirical results.

Although the simulations are run on the signals of size n =
128, one can see that the blue line that comes from Theorem

III.1, perfectly predicts phase transition boundary.
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Fig. 1: Phase transition regimes for the PhaseMax problem

in terms of the oversampling ratio δ = m/n and θ, the angle

between x0 and xinit. For the empirical results, we used signals

of size n = 128. The data is averaged over 10 independent

realization of the measurement vectors. The blue line indicates

the sharp phase transition bounds derived in Theorem III.1 and

the red line comes from the results of [17], which is referred

to as the GS Bound.

IV. PROOF OUTLINE

In this part we introduce the main ideas used in the proof

of Theorem III.1. As mentioned earlier in section III, we

assume x0 is a unit norm vector aligned with xinit. Due to

rotational invariance of the Gaussian distribution, without loss

of generality, we assume x0 = e1, the first vector of the

standard basis in Cn. Furthermore, the optimization program

(2) is scalar invariant. So, we can assume ‖xinit‖ = 1.

The proof consists of two main steps: In the first step,

we analyze the complex optimization problem (2) and find

the necessary and sufficient condition under which x̂ = x0.

Consequently, we use this condition to build an equivalent real

optimization problem. Lemma IV.4 introduces this equivalent

real optimization ERO, in R2n−1, and states that the perfect

recovery in the PhaseMax algorithm occurs if and only if zero

is the unique minimizer of the ERO.

In the second step, we adopt the CGMT framework to

analyze the ERO and investigate the conditions on ρinit (or

θ) under which the unique answer to the ERO is 0. Therefore

,as a result of Lemma IV.4, these conditions will guarantee

the perfect recovery in the initial PhaseMax optimization (2).

A. Introducing the Real Optimization ERO

We define the error vector w := x− x0 and rewrite (2) in

terms of w,

max
w∈Cn

Re{xinit
⋆ w}

subject to: |a⋆i (e1 +w)| ≤ bi , 1 ≤ i ≤ m.
(7)

For i = 1, 2, . . . ,m , we use φi := phase(ai
⋆x0) to define

aligned measurement vectors ãi := ejφiai. Therefore, we

have,

bi = ã⋆i x0 = (ãi)1, for i = 1, 2, . . . ,m , (8)

where (ãi)1 is the first entry of ãi. Let D := {w ∈ Cn :
Re{x⋆

init w} ≥ 0} be the set of all vectors w with nonnegative

objective value and F := {w ∈ Cn : |a⋆i (e1 + w)| ≤
bi, for i = 1, 2, . . . ,m} be the feasible set of the optimization

problem (7). The following lemmas prove necessary and

sufficient conditions for perfect recovery in PhaseMax, based

on these notations.

Lemma IV.1. x0 is the unique optimal solution of (2) if and

only if D
⋂

F = {0}.

Proof. For w ∈ D
⋂

F , x0 + w is a solution of (2) with

an objective value greater than the value for x0. Therefore,

D
⋂

F = {0} is equivalent to x0 be a local minimum of (2)

which is also a global minimum due to convexity of (2).

Lemma IV.2. D
⋂

F = {0} if and only if D
⋂

cone(F) =
{0}.

Proof. Note that D ⊂ Cn is a convex cone and F ⊂ Cn is

a convex set. The proof is the consequence of the following

equality,

D
⋂

cone(F) = cone(D
⋂

F).

Lemma IV.3. cone(F) =
⋂m

i=1{w ∈ Cn : Re{ã⋆i w} ≤ 0}.

Proof. Let d ∈ F ,

|bi + ã⋆id| ≤ bi , for i = 1, 2, . . . ,m. (9)

Therefore,

Re{ã⋆id} = Re{bi + ã⋆id} − bi ,

≤ |bi + ã⋆id| − bi , (10)

≤ 0 .

This shows that cone(F) ⊆
⋂m

i=1{w ∈ Cn : Re{ã⋆iw} ≤
0}. To show the other direction, choose d ∈ Cn such that:

Re{ã⋆id} < 0, for i = 1, 2, . . . ,m. One can show that there



exists R > 0, such that for all r ≤ R, rd ∈ F . Therefore,

d ∈ cone(F). This concludes the proof.

We have the following corollary as a result of Lemma IV.1,

Lemma IV.2, and Lemma IV.3.

Corollary IV.1. x0 is the unique optimal solution of (2) if

and only if,

{w : Re{x⋆
initw} ≥ 0 Re{ã⋆iw} ≤ 0, for 1 ≤ i ≤ m} = {0}.

(11)

We are now ready to establish the equivalent real optimiza-

tion ERO. We will show that the ERO has the exact phase

transition bounds as PhaseMax in (2).

max
w′∈R2n−1

ηT w′

subject to: |a′
T
i (e1 +w′)| ≤ bi , 1 ≤ i ≤ m,

(12)

where e1 is the first vector of the standard basis in R2n−1, η
and {a′i}

m
i=1 are (2n− 1) dimensional real vectors defined as,

η :=

[

Re{xinit}
−Im{xinit(2 : n)}

]

and a′i :=

[

Re{ãi}
−Im{ãi(2 : n)}

]

, ∀i.

(13)

Here Im{ãi(2 : n)} is the imaginary part of the last n − 1
entries of ãi. We conclude this step of the proof with the

following lemma:

Lemma IV.4. x0 is the unique optimal solution of the Phase-

Max method if and only if w′ = 0 is the unique optimal

solution of (12).

The proof of Lemma IV.4 is straightforward by defining

w′ =

[

Re{w}
Im{w(2 : n)}

]

∈ R
2n−1 , (14)

and then showing that the optimality conditions for w′ = 0 in

(12) is equivalent to (11).

It is worth mentioning that the result of Lemma IV.4 is valid

for any set of measurement vectors {ai}. In the next part, we

use this result to compute the phase transition of PhaseMax

when the measurement vectors are drawn independently from

the Gaussian distribution.

B. Convex Gaussian Min-Max Theorem

Our analysis is based on the recently developed Convex

Gaussian Min-max Theorem (CGMT) [22]. The CGMT asso-

ciates with a Primary Optimization (PO) problem an Auxiliary

Optimization (AO) problem from which we can investigate

various properties of the primary optimization, such as phase

transitions. In particular, the (PO) and the (AO) problems are

defined respectively as follows:

Φ(G) := min
w∈Sw

max
u∈Su

uTGw + ψ(u,w), (15a)

φ(g,h) := min
w∈Sw

max
u∈Su

‖w‖gTu− ‖u‖hTw + ψ(u,w),

(15b)

where G ∈ R
m×n,g ∈ R

m,h ∈ R
n, Sw ⊂ R

n,Su ⊂ R
m

and ψ : Rn × Rm → R. Denote wΦ := wΦ(G) and

wφ := wφ(g,h) any optimal minimizers in (15a) and (15b),

respectively. The following lemma is a result of CGMT [22].

Lemma IV.5. Consider the two optimizations (15a) and (15b).

Let Sw,Su be convex and compact sets, ψ be continuous and

convex-concave on Sw×Su, and, G,g and h all have entries

iid standard normal. Suppose there exist α such that in the

limit of n→ ∞ it holds in probability that ‖wφ(g,h)‖ → α.

Then, the same holds for wΦ(G) and we have ‖wΦ(G)‖ → α.

In the next section, first we will rewrite the ERO in the form

of the optimization (15a). This enables us to apply Lemma

IV.5 to the ERO and derive an Auxiliary Optimization in the

form of (15b). This lemma indicates that if ‖wφ(g,h)‖ → 0
for the (AO), then ‖wΦ(G)‖ → 0 for the ERO and we have

perfect recovery. (AO) can be analyzed using the conventional

concentration results in high dimensions.

C. Computing the Phase Transition for PhaseMax

In this part we adopt the CGMT framework along with the

result of Lemma IV.4 to compute the exact phase transition

of the PhaseMax algorithm under the Gaussian measurement

scheme.

We start by calculating the distribution of the entries of

a′i that are defined in (13). Recall that ai’s are independently

drawn from the complex Gaussian distribution with mean zero

and covariance matrix I. Therefore, the distribution of the

entries of ãi’s that were defined in section IV-A, is as follows:

1) The first entry of ãi is the absolute value of the first entry

of the ai. Therefore, it has a Rayleigh distribution, i.e.,

(ãi)1 ∼ R(1), (16)

2) The remaining entries of ãi remain standard Gaussian

random variables,

(ãi)k ∼ NC(0, 1), for 2 ≤ k ≤ n , (17)

3) The entries of ãi remain independent.

This implies that all the entries of a′i are independent, the

first entry of a′i has a R(1) distribution and the rest of

the entries have Gaussian distribution N (0, 12 ). We form the

measurement matrix A ∈ Rm×(2n−1) by stacking vectors

{aiT , 1 ≤ i ≤ m}. Let A1 ∈ Rm be the first column

of A, and Ã ∈ Rm×(2n−1) be the remaining part (i.e.,

A = [A1 Ã]). x0 = e1 implies that A1 = [b1, b2, . . . , bm]T ,

where bi’s are defined in (1). Using the Lagrange multipliers,

we can reformulate (12) as the following minmax program,

min
w1∈R

w̃∈R
2n−2

max
λ,µ∈Rm

+

(

− ηTw + (λ− µ)T Ãw̃

− (λ+ µ)
T
A1 + (λ− µ)

T
A1(1 + w1)

)

,
(18)

where w1 denotes the first entry of w and w̃ is the remaining

part. Define v := λ−µ . It can be shown that optimal values of



(18) satisfy λ+µ = |λ−µ|. Here, | · | denotes the component-

wise absolute value. Therefore, (18) can be rewritten as an

optimization over v ∈ Rm and w ∈ R2n−1 in the following

form:

min
w1∈R

w̃∈R
2n−2

max
v∈Rm

− ηTw+ vT Ãw̃+ vTA1(1 + w1)− |v|TA1.

(19)

Note that Ã has i.i.d. standard normal entries. One can check

that (19) satisfies the condition of Lemma IV.5. Hence, we can

form the (AO) as follows,

min
w1∈R

w̃∈R
2n−2

max
v∈Rm

− ηTw + vTg||w̃||+ ||v||hT w̃

+ vTA1(1 + w1)− |v|TA1,

(20)

where g ∈ Rm and h ∈ R2n−2 with entries drawn indepen-

dently from standard normal distribution. Analysis of (20) is

similar to [20]. Due to lack of space, we defer technical details

to the full version of the paper.

We conclude the paper with a theorem that characterizes

the performance of the ERO. Let w∗ be the optimizer of (20).

Define s∗ := 1 + w∗
1 and t∗ := ||w̃∗||.

Theorem IV.1. In the asymptotic regime where m,n → ∞,

and δ := m
n , s∗ and t∗ converges to the solution of the

following deterministic optimization,

max
s∈[−1,1], t≥0

ρinit s+
√

1− ρinit
2

√

t2 −
δ

2
p(t, s)

subject to: p(t, s) ≤
2t2

δ
.

(21)

In the above optimization, p(t, s) is define as,

p(t, s) =t2 + (1 + s)[1 + s−
√

t2 + (1 + s)2]

+ (1− s)[1− s−
√

t2 + (1 − s)2] (22)

It can be shown that ρinit > 2√
δ

is the necessary and

sufficient condition for (t∗, s∗) = (0, 1) to be the unique

solution of (21) which is equivalent to the perfect recovery

in the ERO.
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