31 research outputs found

    Reliability and Data Analysis of Wearout Mechanisms for Circuits

    Get PDF
    The objective of this research is to develop methodologies for the failure analysis of circuits, as well as investigate the factors for accelerating testing for front-end-of-line time-dependent dielectric breakdown (FEOL TDDB). The separation of wearout mechanisms for circuits will be investigated, and the identification of failure modes for the failure samples will be analyzed. SRAMs and ring oscillators will be used to study the failure modes. The systematic and random errors for online monitoring of SRAMS will also be examined. Furthermore, the testing plans for acceleration testing will also be explored for ring oscillators. Error reduction through sampling will also be used to find the best testing conditions for accelerated testing. This work provides a way for engineers to better understand aging monitoring of circuits, and to design better testing to collect failure data.Ph.D

    ์ฐจ์„ธ๋Œ€ ๋ฐ˜๋„์ฒด ๋ฐฐ์„ ์„ ์œ„ํ•œ ์ฝ”๋ฐœํŠธ ํ•ฉ๊ธˆ ์ž๊ฐ€ํ˜•์„ฑ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰ ์žฌ๋ฃŒ ์„ค๊ณ„ ๋ฐ ์ „๊ธฐ์  ์‹ ๋ขฐ์„ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2022.2. ์ฃผ์˜์ฐฝ.Recently, the resistance-capacitance (RC) delay of the Cu interconnects in metal 1 (M1) level has been increased rapidly due to the reduction of the interconnect linewidth along with the transistor scaling down, and the interconnect reliability becomes a severe issue again. In order to overcome interconnect performance problems and move forward to the next-generation interconnects system, study on low resistivity (ฯo) and low electron mean free path (ฮป) metals was conducted. Generally, metals such as Cobalt (Co), Ruthenium (Ru), and Molybdenum (Mo) are mentioned as candidates for next-generation interconnect materials, and since they have a low ฯo ร— ฮป value, it is expected that the influence of interface scatterings and surface scattering can be minimized. However, harsh operating environments such as high electric fields, critical Joule heating, and reduction of the pitch size are severely deteriorating the performance of electronic devices as well as device reliability. For example, since time dependent dielectric breakdown (TDDB) problems for next-generation interconnect system have been reported recently, it is necessary to study alternative barrier materials and processes to improve the interconnect reliability. Specifically, extrinsic dielectric breakdown due to penetration of Co metal ions in high electric fields has been reported as a reliability problem to be solved in Co interconnect systems. Therefore, there is a need for new material system design and research on a robust diffusion barrier that prevents metal ions from penetrating into the dielectric, thereby improving the reliability of Co interconnects. Moreover, in order to lower the resistance of the interconnect, it is necessary to develop an ultra-thin barrier. This is because even a barrier with good reliability characteristics will degrade chip performance if it takes up a lot of volume in the interconnect. The recommended thickness for a single diffusion barrier layer is currently reported to be less than 2.5 nm. As a result, it is essential to develop materials that comprehensively consider performance and reliability. In this study, we designed a Co alloy self-forming barrier (SFB) material that can make sure of low resistance and high reliability for Co interconnects, which is attracting attention as a next-generation interconnect system. The self-forming barrier methodology induces diffusion of an alloy dopant at the interface between the metal and the dielectric during the annealing process. And the diffused dopant reacts with the dielectric to form an ultra-thin diffusion barrier. Through this methodology, it is possible to improve reliability by preventing the movement of metal ions. First of all, material design rules were established to screen the appropriate alloy dopants and all CMOS-compatible metals were investigated. Dopant resistivity, intermetallic compound formation, solubility in Co, activity coefficient in Co, and oxidation tendency is considered as the criteria for the dopant to escape from the Co matrix and react at the Co/SiO2 interface. In addition, thermodynamic calculations were performed to predict which phases would be formed after the annealing process. Based on thermodynamic calculations, 5 dopant metals were selected, prioritized for self-forming behavior. And the self-forming material was finally selected through thin film and device analysis. We confirmed that Cr, Zn, and Mn out-diffused to the surface of the thin film structure using X-ray photoelectron spectroscopy (XPS) depth profile and investigated the chemical state of out-diffused dopants through the analysis of a binding energy. Cr shows the most ideal self-forming behavior with the SiO2 dielectric and reacted with oxygen to form a Cr2O3 barrier. In metal-insulator-semiconductor (MIS) structure, out-diffused Cr reacts with SiO2 at the interface and forms a self-formed single layer. It was confirmed that the thickness of the diffusion barrier layer is about 1.2 nm, which is an ultra-thin layer capable of minimizing the total effective resistance. Through voltage-ramping dielectric breakdown (VRDB) tests, Co-Cr alloy showed highest breakdown voltage (VBD) up to 200 % than pure Co. The effect of Cr doping concentration and heat treatment condition applicable to the interconnect process was confirmed. When Cr was doped less than 1 at%, the robust electrical reliability was exhibited. Also, it was found that a Cr2O3 interfacial layer was formed when annealing process was performed at 250 ยฐC or higher for 30 minutes or longer. In other words, Co-Cr alloy is well suited for the interconnect process because current interconnect process temperature is below 400 ยฐC. And when the film thickness was lowered from 150 nm to 20 nm, excellent VBD values were confirmed even at high Cr doping concentration (~7.5 at%). It seems that the amount of Cr present at the Co/SiO2 interface plays a very important role in improving the Cr oxide SFB quality. Physical modeling is necessary to understand the amount of Cr at the interface according to the interconnect volumes and the reliability of the Cr oxide self-forming barrier. TDDB lifetime test also performed and Co-Cr alloy interconnect shows a highly reliable diffusion barrier property of self-formed interfacial layer. The DFT analysis also confirmed that Cr2O3 is a very promising barrier material because it showed a higher energy barrier value than the TiN diffusion barrier currently being studied. A Co-based self-forming barrier was designed through thermodynamic calculations that take performance and reliability into account in interconnect material system. A Co interconnect system with an ultra-thin Cr2O3 diffusion barrier with excellent reliability is proposed. Through this design, it is expected that high-performance interconnects based on robust reliability in the advanced interconnect can be implemented in the near future.์ตœ๊ทผ ๋ฐ˜๋„์ฒด ์†Œ์ž ์Šค์ผ€์ผ๋ง์— ๋”ฐ๋ฅธ ๋ฐฐ์„  ์„ ํญ ๊ฐ์†Œ๋กœ M0, M1์˜์—ญ์—์„œ์˜ metal ๋น„์ €ํ•ญ์ด ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•˜์—ฌ ๋ฐฐ์„ ์—์„œ์˜ RC delay๊ฐ€ ๋‹ค์‹œ ํ•œ๋ฒˆ ํฌ๊ฒŒ ๋ฌธ์ œ๊ฐ€ ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ ์ฐจ์„ธ๋Œ€ ๋ฐฐ์„  ์‹œ์Šคํ…œ์—์„œ๋Š” ๋‚ฎ์€ ๋น„์ €ํ•ญ๊ณผ electron mean free path (EMFP)์„ ๊ฐ€์ง€๋Š” ๋ฌผ์งˆ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๋Œ€ํ‘œ์ ์œผ๋กœ Co, Ru, Mo์™€ ๊ฐ™์€ ๊ธˆ์†๋“ค์ด ์ฐจ์„ธ๋Œ€ ๋ฐฐ์„  ์žฌ๋ฃŒ ํ›„๋ณด๋กœ ์–ธ๊ธ‰๋˜๊ณ  ์žˆ์œผ๋ฉฐ ๋‚ฎ์€ ฯ0 ร— ฮป ๊ฐ’์„ ๊ฐ–๊ธฐ ๋•Œ๋ฌธ์— interface (surface) scattering๊ณผ grain boundary scattering ์˜ํ–ฅ์„ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๋ณด๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ฐ€ํ˜นํ•œ electrical field์™€ ๋†’์€ Joule heating์ด ๋ฐœ์ƒํ•˜๋Š” ๋™์ž‘ ํ™˜๊ฒฝ์œผ๋กœ ์ธํ•ด performance๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์†Œ์ž ์‹ ๋ขฐ์„ฑ์ด ๋” ์—ด์•…ํ•œ ์ƒํ™ฉ์— ๋†“์—ฌ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด ์ฐจ์„ธ๋Œ€ ๊ธˆ์†์— ๋Œ€ํ•œ time dependent dielectric breakdown (TDDB) ์‹ ๋ขฐ์„ฑ ๋ฌธ์ œ๊ฐ€ ๋ณด๊ณ ๋˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ๋ณด์•ˆํ•  ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰ ๋ฌผ์งˆ ๋ฐ ๊ณต์ •์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ํŠนํžˆ ๋†’์€ ์ „๊ธฐ์žฅ์—์„œ Co ion์ด ์œ ์ „์ฒด๋กœ ์นจํˆฌํ•˜์—ฌ extrinsic dielectric breakdown ์‹ ๋ขฐ์„ฑ ๋ฌธ์ œ๊ฐ€ ์ตœ๊ทผ ๋ณด๊ณ ๋˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๊ธˆ์† ์ด์˜จ์ด ์œ ์ „์ฒด ๋‚ด๋ถ€๋กœ ์นจํˆฌํ•˜๋Š” ๊ฒƒ์„ ๋ฐฉ์ง€ํ•˜์—ฌ, Co ๋ฐฐ์„ ์˜ ์‹ ๋ขฐ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ๊ฒฌ๊ณ ํ•œ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰ ๊ฐœ๋ฐœ ๋ฐ ์ƒˆ๋กœ์šด ๋ฐฐ์„  ์‹œ์Šคํ…œ ์„ค๊ณ„๊ฐ€ ํ•„์š”ํ•œ ์‹œ์ ์ด๋‹ค. ๋˜ํ•œ, ๋ฐฐ์„  ์ €ํ•ญ์„ ๋‚ฎ์ถ”๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋งค์šฐ ์–‡์€ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰ ๊ฐœ๋ฐœ์ด ํ•„์š”ํ•˜๋‹ค. ์‹ ๋ขฐ์„ฑ์ด ์ข‹์€ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰์ด๋ผ๋„ ๋ฐฐ์„ ์—์„œ ๋งŽ์€ ์˜์—ญ์„ ์ฐจ์ง€ํ•  ๊ฒฝ์šฐ ์ „์ฒด ์„ฑ๋Šฅ์ด ์ €ํ•˜๋˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. Cu ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰์œผ๋กœ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” TaN ์ธต์€ 2.5 nm ๋ณด๋‹ค ์–‡์„ ๊ฒฝ์šฐ ์‹ ๋ขฐ์„ฑ์ด ๊ธ‰๊ฒฉํžˆ ๋‚˜๋น ์ง€๋ฏ€๋กœ 2.5 nm๋ณด๋‹ค ์–‡์€ ๋‘๊ป˜์˜ ๊ฒฌ๊ณ ํ•œ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰ ๊ฐœ๋ฐœ์ด ํ•„์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ฐจ์„ธ๋Œ€ ๋ฐ˜๋„์ฒด ๋ฐฐ์„  ๋ฌผ์งˆ๋กœ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋Š” Co ๊ธˆ์†์— ๋Œ€ํ•˜์—ฌ ์ €์ €ํ•ญยท๊ณ ์‹ ๋ขฐ์„ฑ์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋Š” Co alloy ์ž๊ฐ€ํ˜•์„ฑ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰ (Co alloy self-forming barrier, SFB) ์†Œ์žฌ ๋””์ž์ธํ•˜์˜€๋‹ค. ์ž๊ฐ€ํ˜•์„ฑ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰ ๋ฐฉ๋ฒ•๋ก ์€ ์—ด์ฒ˜๋ฆฌ ๊ณผ์ •์—์„œ ๊ธˆ์†๊ณผ ์œ ์ „์ฒด ๊ณ„๋ฉด์—์„œ ๋„ํŽ€ํŠธ๊ฐ€ ํ™•์‚ฐํ•˜๊ฒŒ ๋œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ™•์‚ฐ๋˜๋‹ˆ ๋„ํŽ€ํŠธ๋Š” ์–‡์€ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰์„ ํ˜•์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์ด๋‹ค. ์ด ๋ฐฉ๋ฒ•๋ก ์„ ํ†ตํ•ด ๊ธˆ์† ์ด์˜จ์˜ ์ด๋™์„ ๋ฐฉ์ง€ํ•˜์—ฌ Co ๋ฐฐ์„  ์‹ ๋ขฐ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•˜์˜€๋‹ค. ์šฐ์„ , Co ํ•ฉ๊ธˆ์ƒ์—์„œ ์ ์ ˆํ•œ ๋„ํŽ€ํŠธ๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด์„œ CMOS ๊ณต์ •์— ์ ์šฉ ๊ฐ€๋Šฅํ•œ ๊ธˆ์†๋“ค์„ ์„ ๋ณ„ํ•˜์˜€๋‹ค. ๋„ํŽ€ํŠธ ์ €ํ•ญ, ๊ธˆ์†๊ฐ„ ํ™”ํ•ฉ๋ฌผ ํ˜•์„ฑ ์—ฌ๋ถ€, Co๋‚ด ๊ณ ์šฉ๋„, Co alloy์—์„œ์˜ ํ™œ์„ฑ๊ณ„์ˆ˜, ์‚ฐํ™”๋„, Co/SiO2 ๊ณ„๋ฉด์—์„œ์˜ ์•ˆ์ •์ƒ์„ ์—ด์—ญํ•™์  ๊ณ„์‚ฐ์„ ํ†ตํ•ด์„œ ๋ฌผ์งˆ ์„ ์ • ๊ธฐ์ค€์œผ๋กœ ์„ธ์› ๋‹ค. ์—ด์—ญํ•™์  ๊ณ„์‚ฐ์„ ๊ธฐ๋ฐ˜์œผ๋กœ 9๊ฐœ์˜ ๋„ํŽ€ํŠธ ๊ธˆ์†์ด ์„ ํƒ๋˜์—ˆ์œผ๋ฉฐ, Co ํ•ฉ๊ธˆ ์ž๊ฐ€ํ˜•์„ฑ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰ ๊ธฐ์ค€์— ๋”ฐ๋ผ์„œ ์šฐ์„  ์ˆœ์œ„๋ฅผ ์ง€์ •ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ตœ์ข…์ ์œผ๋กœ ๋ฐ•๋ง‰๊ณผ ์†Œ์ž ์‹ ๋ขฐ์„ฑ ํ‰๊ฐ€๋ฅผ ํ†ตํ•ด์„œ ๊ฐ€์žฅ ์ ํ•ฉํ•œ ์ž๊ฐ€ํ˜•์„ฑ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰ ๋ฌผ์งˆ์„ ์„ ์ •ํ•˜์˜€๋‹ค. X-ray photoelectron spectroscopy (XPS) ๋ถ„์„์„ ์ด์šฉํ•˜์—ฌ Cr, Zn, Mn์ด ๋ฐ•๋ง‰ ๊ตฌ์กฐ์˜ ํ‘œ๋ฉด์œผ๋กœ ์™ธ๋ถ€ ํ™•์‚ฐ ์—ฌ๋ถ€๋ฅผ ํ™•์ธํ•˜๊ณ  ๊ฒฐํ•ฉ ์—๋„ˆ์ง€ ๋ถ„์„์„ ํ†ตํ•ด ์™ธ๋ถ€๋กœ ํ™•์‚ฐ๋œ ๋„ํŽ€ํŠธ์˜ ํ™”ํ•™์  ์ƒํƒœ๋ฅผ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ Cr, Zn, Mn์ด ์œ ์ „์ฒด ๊ณ„๋ฉด์œผ๋กœ ํ™•์‚ฐ๋˜์–ด ์‚ฐ์†Œ์™€ ๋ฐ˜์‘ํ•˜์—ฌoxide/silicate ํ™•์‚ฐ ๋ฐฉ์ง€๋ง‰ (e.g. Cr2O3, Zn2SiO4, MnSiO3)์„ ํ˜•์„ฑํ•œ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ทธ ์ค‘ Cr์€ SiO2 ์œ ์ „์ฒด์™€ ํ•จ๊ป˜ ๊ฐ€์žฅ ์ด์ƒ์ ์ธ ์ž๊ธฐ ํ˜•์„ฑ ๊ฑฐ๋™์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ ์‚ฐ์†Œ์™€ ๋ฐ˜์‘ํ•˜์—ฌ Cr2O3 ์ธต์„ ํ˜•์„ฑํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. MIS (Metal-Insulator-Semiconductor) ๊ตฌ์กฐ์—์„œ๋„ ์™ธ๋ถ€๋กœ ํ™•์‚ฐ๋œ Cr์€ ๊ณ„๋ฉด์—์„œ SiO2์™€ ๋ฐ˜์‘ํ•˜์—ฌ Cr2O3 ์ž๊ฐ€ํ˜•์„ฑ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰์ด ํ˜•์„ฑ๋˜์—ˆ๋‹ค. ํ™•์‚ฐ๋ฐฉ์ง€์ธต์˜ ๋‘๊ป˜๋Š” ์•ฝ 1.2nm๋กœ ์ „์ฒด ์œ ํšจ์ €ํ•ญ์„ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ์ถฉ๋ถ„ํžˆ ์–‡์€ ๋‘๊ป˜๋ฅผ ํ™•๋ณดํ•˜์˜€๋‹ค. VRDB (Voltage-Ramping Dielectric Breakdown) ํ…Œ์ŠคํŠธ๋ฅผ ํ†ตํ•ด Co-Cr ํ•ฉ๊ธˆ์€ ์ˆœ์ˆ˜ Co๋ณด๋‹ค ์ตœ๋Œ€ 200% ๋†’์€ ํ•ญ๋ณต ์ „์•• (breakdown voltage)์„ ๋ณด์˜€๋‹ค. ๋ฐ˜๋„์ฒด ๋ฐฐ์„  ๊ณต์ •์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” Cr ๋„ํ•‘ ๋†๋„์™€ ์—ด์ฒ˜๋ฆฌ ์กฐ๊ฑด์˜ ์˜ํ–ฅ์„ ํ™•์ธํ•˜์˜€๋‹ค. Cr์ด 1at% ๋ฏธ๋งŒ์œผ๋กœ ๋„ํ•‘๋˜์—ˆ์„ ๋•Œ ์šฐ์ˆ˜ํ•œ ์ „๊ธฐ์  ์‹ ๋ขฐ์„ฑ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ๋˜ํ•œ, 250โ„ƒ ์ด์ƒ์—์„œ 30๋ถ„ ์ด์ƒ ์—ด์ฒ˜๋ฆฌ๋ฅผ ํ•˜์˜€์„ ๋•Œ Cr2O3 ๊ณ„๋ฉด์ธต์ด ํ˜•์„ฑ๋จ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ฆ‰, ํ˜„์žฌ ๋ฐฐ์„  ๊ณต์ • ์˜จ๋„๊ฐ€ 400ยฐC ๋ฏธ๋งŒ์ด๊ธฐ ๋•Œ๋ฌธ์— Co-Cr ํ•ฉ๊ธˆ์ด ๋ฐฐ์„  ๊ณต์ •์— ์ ์šฉ ๊ฐ€๋Šฅํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. TDDB ์ˆ˜๋ช… ํ…Œ์ŠคํŠธ๋„ ์ˆ˜ํ–‰๋˜์—ˆ์œผ๋ฉฐ Co-Cr ํ•ฉ๊ธˆ ๋ฐฐ์„ ์€ ์ž์ฒด ํ˜•์„ฑ๋œ ๊ณ„๋ฉด์ธต์˜ ๋งค์šฐ ์•ˆ์ •์ ์ธ ํ™•์‚ฐ ์žฅ๋ฒฝ ํŠน์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. DFT ๋ถ„์„์€ Cr2O3์ž๊ฐ€ํ˜•์„ฑ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰์ด ํ˜„์žฌ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋Š” TiN ํ™•์‚ฐ ์žฅ๋ฒฝ๋ณด๋‹ค ๋” ๋†’์€ ์—๋„ˆ์ง€ ์žฅ๋ฒฝ ๊ฐ’์„ ๋ณด์—ฌ์ฃผ๊ธฐ ๋•Œ๋ฌธ์— ๋งค์šฐ ์œ ๋งํ•œ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰์ž„์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฐ˜๋„์ฑ„ ๋ฐฐ์„  ๋ฌผ์งˆ ์‹œ์Šคํ…œ์—์„œ ์„ฑ๋Šฅ๊ณผ ์‹ ๋ขฐ์„ฑ์„ ๊ณ ๋ คํ•œ ์—ด์—ญํ•™์  ๊ณ„์‚ฐ์„ ํ†ตํ•ด Co ๊ธฐ๋ฐ˜ ์ž๊ฐ€ํ˜•์„ฑ ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ ์‹ ๋ขฐ์„ฑ์ด ์šฐ์ˆ˜ํ•˜๊ณ  ์•„์ฃผ ์–‡์€ Cr2O3 ํ™•์‚ฐ๋ฐฉ์ง€๋ง‰์ด ์žˆ๋Š” Co-Cr ํ•ฉ๊ธˆ์ด ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ฌผ์งˆ ์„ค๊ณ„์™€ ์ „๊ธฐ์  ์‹ ๋ขฐ์„ฑ ๊ฒ€์ฆ์„ Co/Cr2O3/SiO2 ๋ฌผ์งˆ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜์˜€๊ณ  ์•ž์œผ๋กœ์˜ ๋‹ค๊ฐ€์˜ฌ ์ฐจ์„ธ๋Œ€ ๋ฐฐ์„ ์—์„œ ๊ตฌํ˜„๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Abstract i Table of Contents v List of Tables ix List of Figures xii Chapter 1. Introduction 1 1.1. Scaling down of VLSI systems 1 1.2. Driving force of interconnect system evolution 7 1.3. Driving force of beyond Cu interconnects 11 1.4. Objective of the thesis 18 1.5. Organization of the thesis 21 Chapter 2. Theoretical Background 22 2.1. Evolution of interconnect systems 22 2.1.1. Cu/barrier/low-k interconnect system 22 2.1.2. Process developments for interconnect reliability 27 2.1.3. 3rd generation of interconnect system 31 2.2 Thermodynamic tools for Co self-forming barrier 42 2.2.1 Binary phase diagram 42 2.2.2 Ellingham diagram 42 2.2.3 Activity coefficient 43 2.3. Reliability of Interconnects 45 2.3.1. Current conduction mechanisms in dielectrics 45 2.3.2. Reliability test vehicles 50 2.3.3. Dielectric breakdown assessment 52 2.3.4. Dielectric breakdown mechanisms 55 2.3.5. Reliability test: VRDB and TDDB 56 2.3.6. Lifetime models 57 Chapter 3. Experimental Procedures 60 3.1. Thin film deposition 60 3.1.1. Substrate preparation 60 3.1.2. Oxidation 61 3.1.3. Co alloy deposition using DC magnetron sputtering 61 3.1.4. Annealing process 65 3.2. Thin film characterization 67 3.2.1. Sheet resistance 67 3.2.2. X-ray photoelectron spectroscopy (XPS) 68 3.3. Metal-Insulator-Semiconductor (MIS) device fabrication 70 3.3.1. Patterning using lift-off process 70 3.3.2. TDDB packaging 72 3.4. Reliability analysis 74 3.4.1. Electrical reliability analysis 74 3.4.2. Transmission electron microscopy (TEM) analysis 75 3.5. Computation 76 3.5.1 FactsageTM calculation 76 3.5.2. Density Functional Theory (DFT) calculation 77 Chapter 4. Co Alloy Design for Advanced Interconnects 78 4.1. Material design of Co alloy self-forming barrier 78 4.1.1. Rule of thumb of Co-X alloy 78 4.1.2. Co alloy phase 80 4.1.3. Out-diffusion stage 81 4.1.4. Reaction step with SiO2 dielectric 89 4.1.5. Comparison criteria 94 4.2. Comparison of Co alloy candidates 97 4.2.1. Thin film resistivity evaluation 97 4.2.2. Self-forming behavior using XPS depth profile analysis 102 4.2.3. MIS device reliability test 110 4.3 Summary 115 Chapter 5. Co-Cr Alloy Interconnect with Robust Self-Forming Barrier 117 5.1. Compatibility of Co-Cr alloy SFB process 117 5.1.1. Effect of Cr doping concentration 117 5.1.2. Annealing process condition optimization 119 5.2. Reliability of Co-Cr interconnects 122 5.2.1. VRDB quality test with Co-Cr alloys 122 5.2.2. Lifetime evaluation using TDDB method 141 5.2.3. Barrier mechanism using DFT 142 5.3. Summary 145 Chapter 6. Conclusion 148 6.1. Summary of results 148 6.2. Research perspectives 150 References 151 Abstract (In Korean) 166 Curriculum Vitae 169๋ฐ•

    An investigation of high-k materials in metal-insulator-metal capacitor structures

    Get PDF
    Metal insulator metal (MIM) capacitors are vital components of many devices such as communication band beamformers, medical, automotive, RF ICโ€™s and memory applications. Current MIM capacitors technology utilises low dielectric constant (k) materials (k~3.9 - 7), these materials achieve the required electrical properties of high electric field breakdown strength and minimal leakage current. The low k value of the current materials presents a challenge to development of many new technologies and the integration of high-k materials in MIM capacitor structures is vital to overcome this. In this work we investigate the electrical properties of a hafnium silicate material system in MIM capacitors with sputtered aluminium electrodes. A conduction mechanism study was performed and an investigation of the dielectric reliability was carried out using the time dependent dielectric breakdown methodology. The material was determined to have excellent reliability characteristics. In addition, further samples of the above hafnium silicate capacitors were irradiated with total radiation dosages of 16 krad(Si) and 78 krad(Si). The electrical properties of both samples were characterised and their reliability characteristics were determined. The 16 krad(Si) sample was determined to have excellent radiation hardness and the 78 krad(Si) sample displayed a minor decrease in overall performance. Furthermore, we investigate the growth of hafnium silicate films by plasma assisted atomic layer deposition on metal electrodes and compare with a previous growth study which exhibited excellent electrical properties over a range of substrate materials. In this study the dielectric growth was influenced by the bottom electrode material. High resolution transmission electron microscopy (HRTEM) analysis and Raman spectroscopy indicate that the main crystalline phase is monoclinic HfO2 (k ~18). The scanning transmission electron microscopy (STEM) analysis reveals the presence of nanoparticles, located at the HfO2 grain boundaries. Based on energy-dispersive x-ray spectroscopy (EDX) analysis the nanoparticles are consistent with silicon oxide inclusions

    Reliability of HfO2-Based Ferroelectric FETs: A Critical Review of Current and Future Challenges

    Get PDF
    Ferroelectric transistors (FeFETs) based on doped hafnium oxide (HfO2) have received much attention due to their technological potential in terms of scalability, highspeed, and low-power operation. Unfortunately, however, HfO2-FeFETs also suffer from persistent reliability challenges, specifically affecting retention, endurance, and variability. A deep understanding of the reliability physics of HfO2-FeFETs is an essential prerequisite for the successful commercialization of this promising technology. In this article, we review the literature about the relevant reliability aspects of HfO2-FeFETs. We initially focus on the reliability physics of ferroelectric capacitors, as a prelude to a comprehensive analysis of FeFET reliability. Then, we interpret key reliability metrics of the FeFET at the device level (i.e., retention, endurance, and variability) based on the physical mechanisms previously identified. Finally, we discuss the implications of device-level reliability metrics at both the circuit and system levels. Our integrative approach connects apparently unrelated reliability issues and suggests mitigation strategies at the device, circuit, or system level. We conclude this article by proposing a set of research opportunities to guide future development in this field

    Nanofluid Flow in Porous Media

    Get PDF
    Studies of fluid flow and heat transfer in a porous medium have been the subject of continuous interest for the past several decades because of the wide range of applications, such as geothermal systems, drying technologies, production of thermal isolators, control of pollutant spread in groundwater, insulation of buildings, solar power collectors, design of nuclear reactors, and compact heat exchangers, etc. There are several models for simulating porous media such as the Darcy model, Non-Darcy model, and non-equilibrium model. In porous media applications, such as the environmental impact of buried nuclear heat-generating waste, chemical reactors, thermal energy transport/storage systems, the cooling of electronic devices, etc., a temperature discrepancy between the solid matrix and the saturating fluid has been observed and recognized

    Improving the Reliability of Microprocessors under BTI and TDDB Degradations

    Get PDF
    Reliability is a fundamental challenge for current and future microprocessors with advanced nanoscale technologies. With smaller gates, thinner dielectric and higher temperature microprocessors are vulnerable under aging mechanisms such as Bias Temperature Instability (BTI) and Temperature Dependent Dielectric Breakdown (TDDB). Under continuous stress both parametric and functional errors occur, resulting compromised microprocessor lifetime. In this thesis, based on the thorough study on BTI and TDDB mechanisms, solutions are proposed to mitigating the aging processes on memory based and random logic structures in modern out-of-order microprocessors. A large area of processor core is occupied by memory based structure that is vulnerable to BTI induced errors. The problem is exacerbated when PBTI degradation in NMOS is as severe as NBTI in PMOS in high-k metal gate technology. Hence a novel design is proposed to recover 4 internal gates within a SRAM cell simultaneously to mitigate both NBTI and PBTI effects. This technique is applied to both the L2 cache banks and the busy function units with storage cells in out-of-order pipeline in two different ways. For the L2 cache banks, redundant cache bank is added exclusively for proactive recovery rotation. For the critical and busy function units in out-of-order pipelines, idle cycles are exploited at per-buffer-entry level. Different from memory based structures, combinational logic structures such as function units in execution stage can not use low overhead redundancy to tolerate errors due to their irregular structure. A design framework that aims to improve the reliability of the vulnerable functional units of a processor core is designed and implemented. The approach is designing a generic function unit (GFU) that can be reconfigured to replace a particular functional unit (FU) while it is being recovered for improved lifetime. Although flexible, the GFU is slower than the original target FUs. So GFU is carefully designed so as to minimize the performance loss when it is in-use. More schemes are also designed to avoid using the GFU on performance critical paths of a program execution

    A novel deep submicron bulk planar sizing strategy for low energy subthreshold standard cell libraries

    Get PDF
    Engineering andPhysical Science ResearchCouncil (EPSRC) and Arm Ltd for providing funding in the form of grants and studentshipsThis work investigates bulk planar deep submicron semiconductor physics in an attempt to improve standard cell libraries aimed at operation in the subthreshold regime and in Ultra Wide Dynamic Voltage Scaling schemes. The current state of research in the field is examined, with particular emphasis on how subthreshold physical effects degrade robustness, variability and performance. How prevalent these physical effects are in a commercial 65nm library is then investigated by extensive modeling of a BSIM4.5 compact model. Three distinct sizing strategies emerge, cells of each strategy are laid out and post-layout parasitically extracted models simulated to determine the advantages/disadvantages of each. Full custom ring oscillators are designed and manufactured. Measured results reveal a close correlation with the simulated results, with frequency improvements of up to 2.75X/2.43X obs erved for RVT/LVT devices respectively. The experiment provides the first silicon evidence of the improvement capability of the Inverse Narrow Width Effect over a wide supply voltage range, as well as a mechanism of additional temperature stability in the subthreshold regime. A novel sizing strategy is proposed and pursued to determine whether it is able to produce a superior complex circuit design using a commercial digital synthesis flow. Two 128 bit AES cores are synthesized from the novel sizing strategy and compared against a third AES core synthesized from a state-of-the-art subthreshold standard cell library used by ARM. Results show improvements in energy-per-cycle of up to 27.3% and frequency improvements of up to 10.25X. The novel subthreshold sizing strategy proves superior over a temperature range of 0 ยฐC to 85 ยฐC with a nominal (20 ยฐC) improvement in energy-per-cycle of 24% and frequency improvement of 8.65X. A comparison to prior art is then performed. Valid cases are presented where the proposed sizing strategy would be a candidate to produce superior subthreshold circuits

    MICROELECTRONIC RELIABILITY MODELS FOR MORE THAN MOORE NANOTECHNOLOGY PRODUCTS

    Get PDF
    Disruptive technologies face a lack of Reliability Engineering Standards and Physics of Failure (PoF) heritage. Devices based on GaN, SiC, Optoelectronics or Deep-Submicron nanotechnologies or 3D packaging techniques for example are suffering a vital absence of screening methods, qualification and reliability standards when anticipated to be used in Hi-Rel application. To prepare the HiRel industry for just-in-time COTS, reliability engineers must define proper and improved models to guarantee infant mortality free, long term robust equipment that is capable of surviving harsh environments without failure. Furthermore, time-to-market constraints require the shortest possible time for qualification. Breakthroughs technologies are generally industrialized for short life consumer application (typically smartphone or new PCs with less than 3 years lifecycle). How shall we qualify these innovative technologies in long term Hi-Rel equipment operation? More Than Moore law is the paradigm of updating what are now obsolete, inadequate screening methods and reliability models and Standards to meet these demands. A State of the Art overview on Quality Assurance, Reliability Standards and Test Methods is presented in order to question how they must be adapted, harmonized and rearranged. Here, we quantify failure rate models formulated for multiple loads and incorporating multiple failure mechanisms to disentangle existing reliability models to fit the 4.0 industry needs

    Microelectronic reliability models for more than moore nanotechnology products

    Get PDF

    A COMPARATIVE STUDY OF RELIABILITY FOR FINFET

    Get PDF
    The continuous downscaling of CMOS technologies over the last few decades resulted in higher Integrated Circuit (IC) density and performance. The emergence of FinFET technology has brought with it the same reliability issues as standard CMOS with the addition of a new prominent degradation mechanism. The same mechanisms still exist as for previous CMOS devices, including Bias Temperature Instability (BTI), Hot Carrier Degradation (HCD), Electro-migration (EM), and Body Effects. A new and equally important reliability issue for FinFET is the Self -heating, which is a crucial complication since thermal time-constant is generally much longer than the transistor switching times. FinFET technology is the newest technological paradigm that has emerged in the past decade, as downscaling reached beyond 20 nm, which happens also to be the estimated mean free path of electrons at room temperature in silicon. As such, the reliability physics of FinFET was modified in order to fit the newly developed transistor technology. This paper highlights the roles and impacts of these various effects and aging mechanisms on FinFET transistors compared to planar transistors on the basic approach of the physics of failure mechanisms to fit to a comprehensive aging model
    corecore