229 research outputs found

    NANOCONTROLLER PROGRAM OPTIMIZATION USING ITE DAGS

    Get PDF
    Kentucky Architecture nanocontrollers employ a bit-serial SIMD-parallel hardware design to execute MIMD control programs. A MIMD program is transformed into equivalent SIMD code by a process called Meta-State Conversion (MSC), which makes heavy use of enable masking to distinguish which code should be executed by each processing element. Both the bit-serial operations and the enable masking imposed on them are expressed in terms of if-then-else (ITE) operations implemented by a 1-of-2 multiplexor, greatly simplifying the hardware. However, it takes a lot of ITEs to implement even a small program fragment. Traditionally, bit-serial SIMD machines had been programmed by expanding a fixed bitserial pattern for each word-level operation. Instead, nanocontrollers can make use of the fact that ITEs are equivalent to the operations in Binary Decision Diagrams (BDDs), and can apply BDD analysis to optimize the ITEs. This thesis proposes and experimentally evaluates a number of techniques for minimizing the complexity of the BDDs, primarily by manipulating normalization ordering constraints. The best method found is a new approach in which a simple set of optimization transformations is followed by normalization using an ordering determined by a Genetic Algorithm (GA)

    Enumerating Disjoint Partial Models without Blocking Clauses

    Full text link
    A basic algorithm for enumerating disjoint propositional models (disjoint AllSAT) is based on adding blocking clauses incrementally, ruling out previously found models. On the one hand, blocking clauses have the potential to reduce the number of generated models exponentially, as they can handle partial models. On the other hand, they need exponential space and slow down unit propagation. We propose a new approach that allows for enumerating disjoint partial models with no need for blocking clauses by integrating: Conflict-Driven Clause-Learning (CDCL), Chronological Backtracking (CB), and methods for shrinking models (Implicant Shrinking). Experiments clearly show the benefits of our novel approach

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    SAT-Based Synthesis Methods for Safety Specs

    Full text link
    Automatic synthesis of hardware components from declarative specifications is an ambitious endeavor in computer aided design. Existing synthesis algorithms are often implemented with Binary Decision Diagrams (BDDs), inheriting their scalability limitations. Instead of BDDs, we propose several new methods to synthesize finite-state systems from safety specifications using decision procedures for the satisfiability of quantified and unquantified Boolean formulas (SAT-, QBF- and EPR-solvers). The presented approaches are based on computational learning, templates, or reduction to first-order logic. We also present an efficient parallelization, and optimizations to utilize reachability information and incremental solving. Finally, we compare all methods in an extensive case study. Our new methods outperform BDDs and other existing work on some classes of benchmarks, and our parallelization achieves a super-linear speedup. This is an extended version of [5], featuring an additional appendix.Comment: Extended version of a paper at VMCAI'1

    Witness generation in existential CTL model checking

    Get PDF
    Hardware and software systems are widely used in applications where failure is prohibitively costly or even unacceptable. The main obstacle to make such systems more reliable and capable of more complex and sensitive tasks is our limited ability to design and implement them with sufficiently high degree of confidence in their correctness under all circumstances. As an automated technique that verifies the system early in the design phase, model checking explores the state space of the system exhaustively and rigorously to determine if the system satisfies the specifications and detect fatal errors that may be missed by simulation and testing. One essential advantage of model checking is the capability to generate witnesses and counterexamples. They are simple and straightforward forms to prove an existential specification or falsify a universal specification. Beside enhancing the credibility of the model checker\u27s conclusion, they either strengthen engineers\u27 confidence in the system or provide hints to reveal potential defects. In this dissertation, we focus on symbolic model checking with specifications expressed in computation tree logic (CTL), which describes branching-time behaviors of the system, and investigate the witness generation techniques for the existential fragment of CTL, i.e., ECTL, covering both decision-diagram-based and SAT-based. Since witnesses provide important debugging information and may be inspected by engineers, smaller ones are always preferable to ease their interpretation and understanding. To the best of our knowledge, no existing witness generation technique guarantees the minimality for a general ECTL formula with nested existential CTL operators. One contribution of this dissertation is to fill this gap with the minimality guarantee. With the help of the saturation algorithm, our approach computes the minimum witness size for the given ECTL formula in every state, stored as an additive edge-valued multiway decision diagrams (EV+MDD), a variant of the well-known binary decision diagram (BDD), and then builds a minimum witness. Though computationally intensive, this has promising applications in reducing engineers\u27 workload. SAT-based model checking, in particular, bounded model checking, reduces a model checking problem problem into a satisfiability problem and leverages a SAT solver to solve it. Another contribution of this dissertation is to improve the translation of bounded semantics of ECTL into propositional formulas. By realizing the possibility of path reuse, i.e., a state may build its own witness by reusing its successor\u27s, we may generate a significantly smaller formula, which is often easier for a SAT solver to answer, and thus boost the performance of bounded model checking
    corecore