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ABSTRACT OF THESIS

NANOCONTROLLER PROGRAM OPTIMIZATION USING ITE DAGS

Kentucky Architecture nanocontrollers employ a bit-serial SIMD-parallel hardware design
to execute MIMD control programs. A MIMD program is transformed into equivalent
SIMD code by a process called Meta-State Conversion (MSC), which makes heavy use of
enable masking to distinguish which code should be executed by each processing element.
Both the bit-serial operations and the enable masking imposed on them are expressed in
terms of if-then-else (ITE) operations implemented by a 1-of-2 multiplexor, greatly sim-
plifying the hardware. However, it takes a lot of ITEs to implement even a small program
fragment.

Traditionally, bit-serial SIMD machines had been programmed by expanding a fixed bit-
serial pattern for each word-level operation. Instead, nanocontrollers can make use of
the fact that ITEs are equivalent to the operations in Binary Decision Diagrams (BDDs),
and can apply BDD analysis to optimize the ITEs. This thesis proposes and experimentally
evaluates a number of techniques for minimizing the complexity of the BDDs, primarily by
manipulating normalization ordering constraints. The best method found is a new approach
in which a simple set of optimization transformations is followed by normalization using
an ordering determined by a Genetic Algorithm (GA).

Keywords: Nanocontrollers, BitC compiler, BDD Optimization, ITE DAGs, Kentucky
Architecture
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CHAPTER 1: INTRODUCTION

The new compiler optimization technology developed in this thesis is not as closely re-

lated to other compiler optimizations as it is to methods of logic design and analysis. To

understand why this is so, it is useful to review the strange properties of nanocontrollers.

1.1 Motivation

Single-chip sensor arrays, fabricated by micro- or nano-scale processes, are now being

used in a variety of fields. Various types of single-chip array output devices also are be-

ing constructed. All of these devices can function better when accompanied by their own

intelligent, potentially feedback-based, controller. One could attempt to control such nan-

odevices using a conventional microcontroller [KRD07], but sending signals to/from a

single controller becomes infeasible as the number of devices needing control becomes

large.

It is difficult to make intelligent control small enough to fit on-chip with the tiny devices

they control. This reduction in controller circuit complexity can be achieved by using

SIMD “nanoprocessing” elements in the controller. One such solution is to use a “Ken-

tucky Architecture” nanocontroller programmed by an If-Then-Else (ITE) compilation

model [DAG04]. The KITE (Kentucky ITE) architecture is a bit-serial multiplexor-based

SIMD architecture with as few as tens of one-bit local registers. The nanocontroller would

have no on-chip storage except these registers in order to minimize circuit complexity. So

the one-bit local registers must fulfill all the on-chip storage requirements by storing live

ITEs, temporaries, network and I/O information, etc. An external PROM acts as the pro-

gram memory, cost-effectively supporting very large control programs. This less complex

hardware comes at the expense of increased expectations on the compiler with respect to
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issues like register allocation and the complexity of input program that can be handled by

the nanocontroller.

The compiler for a nanocontroller converts an input control program in a high-level lan-

guage (Section3.2), into form that can be understood by the KITE hardware. Each oper-

ation in the control program is transformed from a word-level representation into bit-level

Boolean operation sequences represented by Directed Acyclic Graphs (DAGs) of If-Then-

Else (ITE) operators. Each basic block in the input program typically generates an ITE

DAG containing hundreds or even thousands of ITEs. Because each ITE requires a con-

stant amount of time to execute, run time complexity is proportional to number of nodes

in the ITE DAG, and minimizing this number is the key to achieving good performance.

The number of nodes in the ITE DAGs also impacts compilation speed and difficulty of

register allocation; manipulating ITE DAG complexity also can improve these properties.

The complexity of the ITE DAGs can be managed using techniques borrowed from the

logic circuit design and verification community, such as Binary Decision Diagrams (BDD)

[Bry92].

Variable ordering has been found to influence the complexity of normalized DAG-based

data structures like the BDDs. BDD node counts have been found to vary from linear

to exponential in the number of input variables depending on the variable order used for

their generation because the order of Boolean variable manipulation influences the amount

of factorization of a Boolean function. In a nanocontroller, an exponential size ITE DAG

representation of the bit-serial control program increases the response time of the nanocon-

troller for the target application, requires a large off-chip memory for storage, and com-

plicates the register allocation portion of the compiler. For some Boolean functions, the

number of ITEs that must be analyzed exceeds compiler limitations, so keeping the num-

ber of intermediate ITEs small can be just as important as minimizing the final number

of ITEs. Thus, techniques for BDD variable ordering have the potential to significantly

improve processing of ITE DAGs for nanocontrollers.
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However, finding the optimal variable order to minimize the complexity of a BDD is an

NP-complete problem[BW96] – minimizing the ITE DAGs described in this thesis also is

NP-complete. Several heuristics have been devised [DG97] [LB05] [HS01] [Ric93] to find

the optimal variable order for BDDs, and this thesis was able to build upon these ideas for

minimization of nanocontroller ITE DAGs.

1.2 Contribution of Thesis

This thesis introduces techniques for minimizing the size of the target DAG output by

BitC compiler, using a combination of heuristic search techniques and standard Boolean

normalization techniques and transformations. Techniques used in the circuit minimization

realm have been applied for program minimization. Three genetic algorithms have been

devised to find the optimal variable order, which minimizes the BDD-equivalent ITE DAGs

output by the BitC compiler.

1.3 Organization of Thesis

Chapter 2 sets the stage for this thesis, by introducing some nanocontroller applications,

requirements and the KITE architecture designed to meet the requirements of nanoscale

devices. Chapter 3 introduces the data structures used in KITE Architecture and differ-

entiates it from BDDs and other ITE DAG data structures; this thesis sometimes uses the

shorthand of referring to a nanocontroller ITE DAG with BDD properties as simply a

BDD. Chapter 4 provides the background on the compiler which outputs nanocontroller

programs. Chapter 5 introduces the BDD variable ordering problem and how it is related

to the compilation for nanocontroller. The next chapter carries details on some preliminary

techniques that motivated us towards designing some of our GA-based heuristics. Chap-

ter 7 discusses the initial GA-based variable order optimization implemented in the BitC

compiler. Chapter 8 and 9 discuss some advanced GA-based searches for optimal variable

3



orders. Chapter 10 presents the conclusions and future work for this thesis.
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CHAPTER 2: THE NANOCONTROLLER ARCHITECTURE

This chapter discusses some nanocontroller applications, the hardware and software re-

quirements of the nanocontrollers, and the KITE architecture which meets the discussed

requirements.

2.1 Example Nanocontroller Applications

A few applications with which a nanocontroller can be used are:

– Loss of quality in the image rendered by an image sensor in a digital camera is due

to the application of the same gain and integration time settings to all pixels in the

sensor. By using a nanocontroller to control each pixel, the pixels can be corrected

for defects independently thereby increasing the dynamic range and lowering the

noise in the image output.

– Nanosensors used in chemical and biological applications are made up of arrays of

carbon nanotubes whose electrical and quantum mechanical properties are used to

measure the level of chemical and biological toxins. Properties are measured by

watching how resistance of a clump of nanotubes changes over time as a chemical

passes through the walls of the nanotubes. Measuring thousands or even millions of

these resistances by routing the weak analog signals off-chip for processing simply

is not feasible. Use of a nanocontroller under each sensor array allows the correction

of sensor defects in software in addition to allowing direct digital readout of sensor

data.

– Digital Light Processing (DLP) based projectors use an array of tiny pivoted micro-

mirrors arranged on a semiconductor chip for image rendering. The tilt of each

5



micro mirror determines if that pixel is dark or bright; a pixel is bright if its mirror

deflects light into the projection lens. Gray scale is obtained by linear Pulse Width

Modulation (PWM). However, human eyes respond logarithmically to light, so the

fact that mirrors can only tilt about 1,000 times per second yields very few visible

gradations between black and white. A nanocontroller at each micro mirror could

provide much finer timing control of the PWM to better approximate exponential

brightness, while simultaneously simplifying the off-chip control logic.

2.2 Nanocontroller Requirements

A nanocontroller should meet the requirements outlined in the ensuing subsections in order

to be suitable for use in the applications discussed in the previous section.

2.2.1 Low Circuit Complexity

The nanocontrollers should have a circuit complexity low enough to be paired with nanoscale

devices. Using low temperature nanotechnology fabrication methods, the nanocontroller

array might be fabricated first followed by the nanodevice array on top of their nanocon-

trollers. For a circuit complexity comparable to the physical size of the nanofabricated

devices, the controller should consist of no more than hundreds of transistors.

2.2.2 Predictable Real-time Execution Characteristics

In order to be able to control a sensing device in real-time, the nanocontroller should

have predictable execution timing characteristics. The amount of timing precision required

varies depending on the application of the device which the nanocontroller controls. With

the small physical dimensions of the nanocontroller contributing small time constants, a

real-time response time no worse than a microsecond is desired.
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2.2.3 Localized Input/Output

Since each nanocontroller is envisioned to be fabricated on the same substrate as the con-

trolled devices, it is necessary to accommodate the logic for analog and digital I/O op-

erations in the nanocontroller. While digital I/O can be accomplished through the use

of registers as I/O devices, analog I/O would require a method for Analog-to-Digital and

Digital-to-Analog Conversion (ADC and DAC). To prevent the analog I/O circuitry from

affecting the low circuit complexity of the nanocontroller, analog input would be imple-

mented in software by recording the amount of time taken for a digital threshold voltage

to be crossed when charging a capacitor and analog output would be implemented using

Pulse-Width Modulation software to drive a RC-filter circuit. Implementing analog I/O

using software, allows precision to be traded off for sample speed unlike conventional

ADC/DAC units which fix the precision of conversion. This type of analog I/O is possible

only in a fast enough processor that also has a predictable execution time.

2.2.4 Ability to act as a Parallel Computer

A typical chemical sensor array has thousands or millions of nanosensing devices on a

single chip that need to act together as a system to sense and report the levels of particular

compounds in its environment. This activity requires coordination in the actions of all the

nanosensors, to reduce all their inputs to a single-meaning that would be reported by the

chemical sensor. So all the nanocontrollers on a chip must have the ability to act together

as a parallel computer system.

2.2.5 Independently Programmability

Nanotechnology-based devices exhibit a lot of process variations compared to relatively

larger-scale devices, mainly contributed by variations in their molecular-level structure.
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These variations among the sensors lead to varying levels of device non-linearities in ad-

jacent nanosensors, hence requiring different constants/ algorithms for normalizing their

output values. If each nanocontroller is independently programmable, then the control and

sensing algorithms can take different constants or code paths depending on the state of the

sensor with which it interacts. Independent programmability of the nanocontrollers, also

lets a nanocontroller minimize or prevent the impact of faulty devices in the sensor array

on the measured output by allowing it to take a different code path. Providing independent

programmability to support such algorithms requires a programming environment that can

support MIMD execution (see Section2.3.2).

2.2.6 Re-programmability

After months or years of use, nanosensors can develop faulty elements which will require a

change or upgrade in their control program. This means that the nanocontroller programs

must be able to be changed by reprogramming the memory. With the reprogramming

occurring infrequently, it is acceptable to perform expensive compile-time transformations

which can improve the efficiency of program execution in the nanoprocessor and hence the

real-time response of the nanosensor.

2.3 Basic Terminology

The requirements stated in Section2.2cannot be realized using any existing micro-controller

architectures and compilers. A new architecture and a compilation model is necessary. The

nanocontroller architecture is introduced in this chapter and for a better understanding of

the architectural concepts the following terms are introduced.
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2.3.1 Single Instruction Stream Multiple Data Stream (SIMD)

SIMD is a data parallel processing model where many processing elements perform the

same operation on different streams of data. SIMD processors have a single control unit

which controls many processing elements. Instruction storage and decode is controlled

by the control unit and so the individual processing elements do not require an instruc-

tion memory. The SIMD processing model has a simple hardware because the decoding,

addressing and sequencing operations are all taken care of by a central control unit and

hence no additional complexity is added to the PE’s. SIMD processing is preferred in

nanocontrollers due to its simple hardware.

(a)

Figure 2.1: Representation of SIMD processing

2.3.2 Multiple Instruction Stream Multiple Data Stream (MIMD)

MIMD is a control parallel processing model where many processing elements perform

different operations on different streams of data. Each processing element takes different

execution paths depending on the Instruction stream processed by it. The control and

sensing algorithms for the nanocontrollers may require different constants or code path

depending on the state of the sensor interacting with it. So MIMD has the independent
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programmability feature required for the nanocontrollers. This processing model requires

a hardware which is complex compared to SIMD due to the overhead of replicating the

logic for instruction decode, addressing and sequencing for each processing element.

Figure 2.2: Representation of MIMD processing

2.3.3 Meta-State Conversion1

In the nanocontrollers, the simplicity of SIMD processors and the independent programma-

bility of MIMD processors are desired at the same time. While there are several techniques

available for MIMD emulation on SIMD hardware [NH90] [DC93] [San94], they all re-

quire that each PE must have a copy of the MIMD program in their local memory – which

adds a lot of hardware to a traditional SIMD processor.

Meta-State Conversion [DK93] is a compiler technique which removes the overhead of

storing the control program in the local memory of each processing element and hence

favours our model of computation. This technique considers the set of processor states at

a particular time as a single meta-state. Using static scheduling techniques [HA91], MSC

converts a MIMD program into a SIMD-executable finite automaton based on meta-states

as shown in Figure2.3. The next meta-state to transition to is decided based on the global

OR of votes from all participant processors. The generated meta-state automaton is held

1Although Meta-State Conversion is a compiler technique, it is discussed in this chapter to enable better
understanding of the KITE control unit.
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by the SIMD control unit, thereby removing the necessity of a separate instruction memory

for each processing element.

Figure 2.3: Illustration of Meta-State Conversion

2.3.4 Common Sub-expression Induction2

After MSC, many meta-states in the meta-state graph contain more than one MIMD state.

These MIMD states contain many instructions that in true MIMD execution would have

been executed in parallel. Execution of these instructions on SIMD hardware serializes

the instructions, with each PE enabled only for the MIMD code it would have executed.

(Nanocontrollers simulate disable of PEs by masking operations.) Efficiency of execution

can be improved by factoring the operations that are common between different MIMD

states, which allows them to be executed in parallel by the SIMD PE’s. Common Sub-

expression Induction (CSI) [Die92] is the technique which develops a code schedule for

the SIMD PE’s by factoring common operations between different threads in a meta-state.

2Although Common Sub-expression Induction is a compiler technique, it is discussed in this chapter for
continuity.

11



2.4 KITE Architecture

KITE (Kentucky If Then Else) is a single-bit architecture designed to cater the needs of

intelligently controlled nanosensing and MEMS devices. ITE (If-Then-Else) is the only

instruction in the KITE Instruction Set Architecture. A control program written in a high

level language is converted into a meta-state automaton by the BitC compiler. The code

schedule developed by Common Sub-expression Induction after Meta-State Conversion

is used to execute the code in the meta-state automaton in the SIMD nanoprocessing el-

ements. Each meta-state in the automaton is composed of ITE DAGs representing the

MIMD states composing that state and ends in k-way branches to k possible meta-states.

The next meta-state to transition to, is determined using a Global OR (GOR) of votes from

all participant processors. The Kentucky Architecture differs from traditional SIMD in that

it implements control by selection and thus the control unit is not a uniprocessor but pro-

vides VLIW style multi-way branch support. The envisioned KITE architecture has three

component modules:

2.4.1 The Control Unit

The meta-state automaton is stored in an off-chip memory like a PROM or EEPROM, in-

terfaced by address (A) and data (D) buses. A computer host loads the meta-state program

into the off-chip memory. Unlike a typical SIMD control unit which fetches one instruc-

tion at a time, the KITE control unit prefetches a compressed representation of the next

meta-state based on a Global OR of votes from all participant processors. Thus a KITE

control unit controls the program memory interface and not the processors. After prefetch,

the controller would perform decompression, branch prediction and instruction cache man-

agement treating each basic block as a single unit. Thus the control unit can prefetch basic

blocks at a slower clock (C0) rate while broadcasting the partially decoded instructions

(SITEs) at a faster rate (C1).
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Figure 2.4: The KITE Architecture

2.4.2 The Instruction Sequencers

Broadcast of decoded signals in a huge fan-out device is a clock-speed limiting factor.

The purpose of a sequencer is to prevent the instruction broadcast delay from affecting the

nanoprocessor execution speed. The SITE representation of an instruction generates four

consecutive clock cycles worth of control information for the nanoprocessors. Thus the

control line outputs of the sequencer (RN, RW, IW, TW, and EW) effectively clock each

nanoprocessor. So the input clock to a sequencer can be as much as four times slower than

the nanoprocessor clock, thereby effectively hiding the instruction broadcast delay from

higher level hardware.
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2.4.3 The Nanoprocessor

A nanoprocessor is a simple piece of hardware which consists of a few single-bit regis-

ters, a register-number decoder, and a 2-to-1 multiplexor. Since the operation of a 2-to-1

multiplexor is analogous to the software If-Then-Else instruction, it can process the ITE

instructions and hence acts as the ALU for the nanoprocessor. The three inputs to the

multiplexor (if, then and else), are stored in three single bit registers (i, t, and e) . If the

multiplexor’s select input (if part of the instruction) is true then thethenbit is latched, oth-

erwise theelsebit is latched to the output. This value is stored in another register number.

The equivalence between the if-then-else operational model and KITE hardware is shown

in Figure2.5.

Figure 2.5: Equivalence between a ITE representation and the KITE hardware

The registers of a nanoprocessor hold program variables, constants, network connections,

and I/O device interfaces. The registers 0 and 1 are hard-coded to represent constants 0

and 1. The SITE representation of an instruction is four register numbers (S, I, T, and E)

consisting of the registerS to store into, a registerI for If bit, a registerT for thenbit, and

a registerE for elsebit. A sequencer converts this information into a four-cycle sequence.

For example, a SITE (5, 6, 7, 8) would cause the sequence:

1. RN=6, RW=0, IW=1, TW=0, EW=0

2. RN=7, RW=0, IW=0, TW=1, EW=0

3. RN=8, RW=0, IW=0, TW=0, EW=1
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4. RN=5, RW=1, IW=0, TW=0, EW=0

to be broadcast from the sequencer.
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CHAPTER 3: DATA STRUCTURES OUTPUT BY THE BITC COMPILER

Sections2.3.3and2.3.4already introduced some enabling compiler technologies for MIMD

programmability on SIMD hardware. For converting a controller program written in a

high-level language to a form executable on the bit-serial nanocontroller hardware, a num-

ber of techniques from multi-level logic minimization are used. The data structures used

for this purpose are introduced in this section.

3.1 Boolean Function Representation

Boolean functions can be represented using Truth Tables, Karnaugh maps, canonical Sum-

Of-Products form, Binary Decision Diagrams (BDD), If-Then-Else DAGs etc. In the case

of Truth Tables, Karnaugh Maps and SOP forms, anynargument function requires a rep-

resentation of complexity2n. Using any of these representations to manipulate a Boolean

function involving many variables would either cause the application to run out of mem-

ory or take exponential amount of time in the worst case. Binary Decision Diagrams and

If-Then-Else DAGs have a canonical representation which prevents them from having an

exponential complexity for commonly encountered functions. In the following sections

describe BDDs, ITE DAGs and a variant of these structures used in the BitC compiler.

3.1.1 Binary Decision Diagram

DEFINITION : A Binary Decision Diagram is a rooted binary directed acyclic graph in

which the terminal nodes are two leavesTRUE and FALSE and each non-terminal node is

labeled with a Boolean variable, with its two out-edges leading to a high child and a low

child which could be a nonterminal node or a leaf.

A Binary Decision Diagram (BDD) is a data structure useful for representing and manipu-
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lating a Boolean function. BDDs find extensive application in the fields of symbolic model

checking, test generation, logic synthesis, fault simulation etc. In a BDD, theif- part is

always a simple variable, whereas thethen- and theelse-parts can be recursively defined

in terms of other variables. In general, a BDD is represented as shown in Figure3.1, where

v is a trivial variable and x is a non-trivial node.

Figure 3.1: A general BDD representation

The normal form for BDD, does not allow negated nodes in the synthesized representation.

Negation in the nodes is represented using an ITE of the formif (a) then 0 else 1. A

BDD representing the Boolean functiona1 · b1 + a2 · b2 + a3 · b3 is shown in Figure3.2.

Figure 3.2: A BDD representing the Boolean functiona1 · b1 + a2 · b2 + a3 · b3

17



3.1.2 Karplus’s ITE DAGs

DEFINITION : An If-Then-Else (ITE) DAG as defined by Karplus is a ternary directed

acyclic graph with its leaves labeled withFALSE or a literal, and each internal node has

three edges pointing to the if-, then- and else- parts. Any of the if-, then-, and else- parts

may be specified as a complemented reference, incorporating negation without introducing

another node; for example,TRUE is the reference¬FALSE.

If-Then-Else(ITE) DAG is a data structure closely related to the BDD representation of a

Boolean function, such that a BDD with a two-cut can be trivially transformed into an If-

Then-Else triple representing the same Boolean expression. Theif - part corresponds to the

part of the BDD above the cut and thethen- and theelse-parts correspond to the portions

below the cut[Kar88b]. The If-Then-Else DAGs allow theif- part to be recursively defined,

which allows the ITE representation shown in Figure3.3to have increased sub-expression

sharing when compared to BDDs.

Figure 3.3: A general ITE DAG representation

Thus, the If-Then-Else representation increases opportunities for optimization. Rules for

normalizing If-Then-Else DAGs allow negated nodes in the representation, which removes

the need for nodes of the form if(a) then 0 else 1. In this way, negated nodes further reduce

the complexity of If-Then-Else DAGs.
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Figure 3.4: An ITE DAG representing the Boolean functiona1 · b1 + a2 · b2 + a3 · b3

3.1.3 Kentucky Architecture ITE DAGs

DEFINITION : A Kentucky Architecture If-Then-Else (ITE) DAG is a ternary directed

acyclic graph with its leaves labeled withTRUE, FALSEor a literal, and each inter-

nal node has three edges pointing to the if-, then- and else- parts. The if- part can be a

variable reference or a non-terminal node depending on the type of optimization algorithm

used. Unlike Karplus ITE DAGs, complemented references are not allowed, thus requiring

use of ITEs with the then-partFALSE and the else-partTRUE.

The Kentucky Architecture ITE structure is a direct result of the use of SITE (Store If Then

Else) as the only instruction implemented by nanocontroller hardware; for example, there

are not complemented references because the hardware does not have any such capability.

However, SITEs differ from ITEs in even more significant ways. SITEs are executed in

a strictly sequential complete ordering, not the partial order given by a DAG. Further, the

place to hold the result of each ITE is explicitly given in each SITE; that is the store- part of

each operation. Many different ITE results typically are stored into the same register at dif-

ferent times in the sequence of SITE executions, whereas ITEs and BDDs are considered

as each placing their result on a unique wire. Sophisticated register allocation algorithms

are used to mark SITEs with their register assignments. The key insight was that by tem-

porarily omitting the store- part and using a DAG to express the family of allowable SITE
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orderings, SITE code can be modeled using an ITE form that can be optimized using tech-

niques derived from those normally operating on BDDs or Karplus-style ITE DAGs. In

fact, the store- parts are actually kept as a list of separate operations at the end of each

Kentucky Architecture ITE DAG, and then later applied when generating the final SITE

program sequence.

The Kentucky Architecture ITEs generated by the BitC compiler always have the general

structure shown in Figure3.3. However, the representation can be more closely related to

either a Karplus If-Then-Else DAG or a BDD, depending on the point at which one ex-

amines the internal form and which optimization algorithms have been applied in the BitC

compiler. When the BDD normalization algorithm is used, then the ITE DAG is equivalent

to a BDD, and this thesis will often use the shorthand of referring to such an ITE DAG as

a BDD. Before or without such normalization, the ITE DAGs used are essentially a subset

of Karplus’s If-Then-Else DAG structures in which no references are complemented. The

thesis will generally refer to a Kentucky Architecture ITE DAG that might or might not

be equivalent to an BDD as simply an ITE DAG. Earlier, the practicality of directly using

Karplus’s ITE DAG structure and normal form was evaluated, and the BitC compiler still

offers that analysis as a command-line option, but the failure of that model to associate

cost with negation made it a less effective way to optimize SITEs.

Compared to BDDs or Karplus’s ITE DAGs, the diagrams of the data structures output by

the BitC compiler are inverted. The inverted DAG representation, as shown in Figure3.5,

places registers at the top of the graphic. More precisely, the DAG diagrams used corre-

spond to a level-order schedule of the ITE operations. A level-order schedule is commonly

used to show the maximum parallelism available in performing a DAG; all ITE nodes on

the same horizontal level could be executed simultaneously with sufficient hardware. The

level of each node is one below the lowest level of a node upon whose result this node

depends. Although the nanocontroller SITE programs do not use this type of parallelism

in execution, the level order schedule is used to construct the meta-state automaton which
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enables the MIMD program execution on SIMD hardware.

Figure 3.5: Representation of the BDD generated at the BitC compiler output

The BitC Compiler

This chapter discusses the features of the compiler which outputs the control program for

the nanocontroller and the normalizing rules employed in the optimizing phases of the

BitC compiler.

3.2 BitC Programming Language

BitC is the programming language for nanocontrollers. BitC extends the bit field syntax

from the C language to allow explicit declaration of bit precision for variables. For ex-

ample the declarationint:2 a,b; , declares variablesa andb to be 2 bits each. As

already stated, the registers 0 and 1 are reserved for constants 0 and 1, so the 4 bits in the

variables get assigned to registers 2, 3, 4 and 5 respectively in the order of declaration.

Standard C operators, conditional, and looping constructs are supported in BitC; function
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calls are not supported because C-style recursion is not useful given the limited data mem-

ory of a the nanoprocessor. I/O operations are handled through application-specific regis-

ters, which are reserved prior to declaration of ordinary variables. For example,int:1

adc@5; reserves a single bit register starting at register 5. BitC is primarily a sequen-

tial programming language, but also supports parallel programming features like barrier

synchronization, real-time operations, and inter-processor communication.

3.3 BitC Compilation Overview

During compilation, an input program written in BitC undergoes the phases of lexical anal-

ysis and parsing, during which the syntax and semantics of the input program are checked

for correctness. After this, the input variables and program constants are loaded into the

appropriate data structures in a format suitable for further manipulation. The BitC com-

piler then transforms the word-level operations, contained in an input expression written

in BitC, into bit-level Boolean operations represented using If-Then-Else operators. These

bit-level operations are then made to undergo ITE normalizing conditions and/or transfor-

mations specified in [Kar88b]. The normalized ITE expressions from all programs are then

logically merged into a SPMD (Single Program Multiple Data) program, which then under-

goes Meta-State Conversion to produce a guarded SIMD code. To improve the efficiency

of execution of the guarded SIMD code on SIMD hardware, the common sub-expressions

are factored out between the different MIMD states constituting a meta-state. During this

phase the compiler performs CSI, in which it reuses the normalizations and/or transforma-

tions employed in the optimizing phase. The ITEs resulting after CSI are converted into

SITEs which specify the registers in which the result of every ITE operation should be

stored. To prevent maxlive from exceeding the number of available on-chip registers, a

novel Register Allocation [ADR05] technique is applied before final code generation.
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Figure 3.6: Block Diagram illustrating BitC compilation
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3.3.1 Word-Level to ITE Conversion

The BitC compiler converts a word-level operation into its equivalent bit-level operation as

shown in the following example. Consider the word-level program,int:2 a, b, c;

c=a+b; . The add operation in this program can be expressed using the individual bits in

each word value as:

{c1, c0} ← {a1, a0}+ {b1, b0}

Implementing the above program using logic gates would lead to a circuit of the form

shown in Figure3.7.

Figure 3.7: Gate level representation of a full-adder circuit

Common logic operations can be represented using the If-Then-Else operator as shown in

Table3.1.

Table 3.1: Logic Operations and their ITE equivalents expressed using C’s trinary operator
syntax

Logic Operation Equivalent ITE structure

(x AND y) (x ? y : 0)
(x OR y) (x ? 1 : y)
(NOT x) (x ? 0 : 1)

(x XOR y) (x ? (y ? 0 : 1) : y)
((NOT x) ? y : z) (x ? z : y)

The logic operations involved in a two bit full-adder shown in Figure3.7can be expressed

using the If-Then-Else operator shown in Table3.1as shown in the Algorithm 1.
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cy0 = 0
x0 = EXOR( a0 , b0 ) = ( a0 ? ( b0 ? 0 : 1 ) : b0 )
n0 = AND( a0 , b0 ) = ( a0 ? b0 : 0 )
c0 = EXOR( x0 , cy0 ) = ( x0 ? ( cy0 ? 0 : 1) : cy0)
cy1 = OR( n0 , AND( x0 , cy0 )) = ( n0 ? 1 : ( x0 ? cy0 : 0 ))
x1 = EXOR( a1 , b1 ) = ( a1 ? ( b1 ? 0 : 1 ) : b1 )
n1 = AND( a1 , b1 ) = ( a1 ? b1 : 0 )
c1 = EXOR( x1 , cy1 ) = ( x1 ? (cy1 ? 0 : 1 ) : cy1 )
cy2 = OR( n1 , AND (x1 , cy1 )) = ( n1 ? 1 : ( x1 ? cy1 : 0 ))

Algorithm 1: Algorithm for full-adder

The BDD generated by the BitC compiler after imposing the normalizing conditions is

shown in Figure3.7.

Figure 3.8: If-Then-Else DAG representing the full-adder program

The output generated by the BitC compiler after compiling the shown example program

is 30 ITEs Created, 10 Kept , where the number of ITEs created relates to the

number nodes in the intermediate DAG and the number of ITEs kept denotes the number

of nodes in the final DAG i.e the number of live ITEs at the end of computation. In the

KITE architecture the number of ITEs left alive at the end of compilation signifies the

number of ITE operations that need to be performed by the KITE processor.
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3.3.2 Normalization

Normalized form or Canonical form of a Boolean function is any standard representation in

which all logically equivalent expressions have an identical representation. The technique

of Boolean expression normalization involves imposing restrictions on the order of variable

manipulation and some rules that identify and factor equivalent sub-expressions.

In the BitC compiler, after the word-level operations are converted to their equivalent bit-

level ITE forms they are subject to BDD normalizing techniques and/or ITE DAG trans-

formations from [Kar88a]. Usually, BDD normalization is carried out for making tests like

equivalence and satisfiability be just an equality check on the pointers, i.e. have unitary

cost. In the BitC compiler, the primary goal of applying the normalization rules is to have

a BDD representation which has a small number of nodes at its output.

BDD Normal Form

The canonical form for Binary Decision Diagrams was originally proposed by Bryant

[Bry86]. The Bryant Normal Form imposed two restrictions on the nodes of a BDD. The

first of the restrictions requires the atom in each node of the BDD to be earlier in order than

its high and low children. The second restriction requires each node of a BDD to represent

non-equivalent expressions.

Karplus [Kar88a] introduced a strong canonical form version of Bryant’s Normal Form

in which different nodes in a BDD represented different expressions rather than just non-

equivalent expressions as originally implemented. Karplus also introduced the use of an

If-Then-Else Operator for manipulating BDDs instead of the standard Boolean Operators.

His work also listed a standard set of simplification and recursion stopping conditions

which can be applied when recursively simplifying a BDD represented using an If-Then-

Else Operator. Algorithms 2 and 3 list these simplifying conditions and recursion stopping
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conditions with theif- part represented bya, the then-part represented byb and theelse-

part being represented byc in an If-Then-Else operator.

Algorithm 2: Special Cases for If-Then-Else simplification [Kar88a] of
if (a) then (b) else (c)
If a = TRUE, returnb.
If a = FALSE, returnc.
If b = c, returnb.
If b = TRUE andc = FALSE, returna.
If c = TRUE andb = FALSE, return¬a.

Algorithm 3: Recursion stopping conditions for simplifying BDDs and ITE DAGs
[Kar88a] represented using ITE operators of the formatif (a) then (b) else (c)
If a = b, then replaceb with TRUE.
If a = c, then replacec with FALSE.
If a = ¬b, then replaceb with FALSE.
If a = ¬c, then replacec with TRUE.

The BitC compiler applies the stated normalizing restrictions, simplifying conditions and

recursion stopping conditions to the Boolean equivalent of the word-level program during

the code optimization phase. The function which accepts theif- , then-andelse-represen-

tations of the word-level operations and subjects them to normalizing rules is calledmkite,

which is described in the next section.

The mkiteFunction

Themkitefunction accepts the bit-level ITE equivalents of the word-level operations and

subjects them to the normalizing rules recursively. Consider the case of two-bit addition

demonstrated in Section3.3.1. The corresponding ITE representation would be:

c0 ← (a0?(b0?0: 1): b0)

c1 ← ((a1?(b1?0: 1): b1)?((a0?b0: 0)?0: 1): (a0?b0: 0))

27



The bits c0 and c1 are computed by callingmkite function for each ITE tuple shown in

the above representation. Themkitefunctions enforces the normalization conditions from

Bryant Normal form on the atoms of the ITE. Atrivial atom in an ITE is an atom that is

a part of the variables in the input expression. Anontrivial atom is the atom that has a

recursive representation using the previously generated ITEs.

A call to mkitefor generating ITE representation for the bit c0 would be of the form,

mkite(a 0,mkite(b 0,0,1),b 0)

While themkitefunction can apply BDD normalizing conditions and/or ITE DAG trans-

formations, we discuss themkite function which applies BDD normalizing rules here to

lead us into some of the preliminary techniques discussed in Chapter5. The techniques in

which themkite function uses ITE DAG transformations instead of normalizations, uses

combinations of ITE DAG transformations and BDD normalizations etc are discussed in

subsequent sections.

Themkitefunction (Algorithm 4) performs a number of standard optimizations on the If,

Then and Else parts passed to it as inputs to convert the final BDD into a canonical repre-

sentation. First it applies a standard set of simplifications that check for and eliminate re-

dundant logic. Then the algorithm applies a set of recursion stopping conditions borrowed

from the If-Then-Else DAG minimization rules proposed by Kevin Karplus [Kar88a]. Al-

though the ITE DAGs here do not implement negated references, the processing does rec-

ognize the (more complex) cases involving negation usingeqnot. Then the normalization

routine chooses the smallest node among the 3 nodes that are given to it to constitute theif -

part, with thethen-and theelse-parts determined by recursive DAG walk. So, theif- parts

are restricted to trivial atoms where as thethen-and theelse-parts can have a non-trivial

node when necessary.

A hash table (uniq) accepts ITEs from themkite routine, creates new entries for unique

ITEs and returns a pointer to an existing record whenever the ITE already exists. The nor-
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malizing restrictions are such that the variable order determines the amount of factorization

in the ITE DAG generated by the ITE (target code) generator and hence its size.

Algorithm 4: Themkitefunction
int mkite(register int a,
register int b,
register int c)
{
register int am, bm, cm, m, left, right;
/* Simplifications */
if (a == b) b = ITE1;
if (a == c) c = ITE0;
if (eqnot(a, b)) b = ITE0;
if (eqnot(a, c)) c = ITE1;
/* Stopping conditions */
if (a == ITE1) return(b);
if (a == ITE0) return(c);
if (b == c) return(b);
if ((b == ITE1) && (c == ITE0)) return(a);
/* Recursive normalization */
am = (ITEISVAR(a) ? a : ites[a].a);
bm = (ITEISVAR(b) ? b : ites[b].a);
cm = (ITEISVAR(c) ? c : ites[c].a);
m = ((am > bm) ? am : bm);
m = ((m > cm) ? m : cm);
left = mkite(splitleft(a,m),
splitleft(b,m),
splitleft(c,m));
right = mkite(splitright(a,m),
splitright(b,m),
splitright(c,m));
if ((m != a) || (left != b) || (right != c))
return(mkite(m, left, right));
return(uniq(m, left, right));
}

The optimizations are recursively performed because the normalizing conditions could

potentially expose ITE forms that could be factored by one of the initial conditions.
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CHAPTER 4: THE VARIABLE ORDERING PROBLEM

This chapter explains the impact of the BDD variable ordering problem on nanocontroller

compilation and discusses some existing work addressing the BDD variable ordering prob-

lem.

4.1 Impact Of Variable Ordering

The order of variables in a BDD can favorably or adversely impact BDD complexity in

terms of the number of nodes and the amount of memory required to develop the repre-

sentation. The difference between BDD complexity with good and bad orderings can be

exponentially large; in practice, the difference might not be exponentially large, but ranges

from a few percent to about a factor of two. For example, using a good variable order-

ing vs. using a bad variable ordering in the BitC compiler produced the two ITE DAGs

shown in Figure4.1. With the word-level to bit-level transformations inherently generating

large basic blocks even for small programs, this complexity difference is very significant.

The size of the DAG determines the amount of time required to compute the result of a

Boolean function in hardware, which influences the response time of the nanocontroller.

The amount of memory required to develop a DAG representation impacts the complexity

of control algorithms that can be used with the nanocontroller.

ITE DAG complexity also has an indirect impact on register allocation. The KITE Archi-

tecture provides a limited number of registers and no other memory on the nanocontroller

chip. Thus, the on-chip registers are the only means of storage in a nanoprocessor. These

registers store the live and temporary ITEs during the computation of a Boolean function in

addition to storing control and state information. This keeps the processor complexity low

but the pressure is now on the compiler to reduce the number of DAG nodes that require
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storage in the registers and to perform efficient register allocation for the nanocontroller to

be functional.

(a) default variable order

(b) reversed variable order

Figure 4.1: Figure illustrating the difference in DAG complexity with difference in vari-
able order while computingint:3 a, b, c;c=a+b+c;
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4.2 Combating BDD Complexity Explosion In Nanocontrollers

Finding a variable order that produces a BDD with the least possible number of nodes

can help the nanocontroller function with a fast response time, accuracy and to perform

complex control operations. It also helps the BitC compiler to develop representations for

controller programs without the computer host running out of memory space. There are

several heuristics available for variable ordering as will be seen in the following section.

The techniques implemented in this thesis are based on:

1. Applying GA based heuristics to find the variable order that ensures the most com-

pact final DAG.

2. Applying Code Factoring Transformations which expose possibilities for factoriza-

tion of ITE tuples.

3. Combinations of the above.

4.3 Variable Ordering Heuristics: Existing Work

There are several existing algorithms designed to find the optimal BDD variable order for

minimizing completely specified Boolean functions. A few algorithms which are relevant

to this work are reviewed here.

4.3.1 Algorithms based on variable exchange

There are two main algorithms based on exchange of neighboring variables in a BDD.

These algorithms are based on the observations of Fujitaet al [FMK91], Ishiura et al

[N.I91], and Rudell [Ric93] that an adjacent variable swap in a BDD has a predictable

complexity.
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Window permutation

Window permutation algorithm starts with choosing a window of sizek which is used to

scan all permutations among thek adjacent variables starting at a particular level in the

DAG. Permutations inside a window are done using adjacent variable swap and the DAG

size is recorded every time. The best permutation of variables is restored at the end of the

search.

Sifting

Sifting starts with a sorted variable order in which the Boolean variables are arranged in a

descending order based on the number of nodes at each level of the DAG. In this technique

each variable is moved up and down in the order using adjacent variable swaps and the

size of the DAG is recorded at each position. Finally the variables are moved to their

locally optimal position which is selected based on the best DAG size recorded during

this search. The worst case complexity of sifting for variable ordering overn variables

is O(n2), which is typically controlled by terminating the search in a particular direction

when the DAG size grows to twice its original size. Many genetic algorithms for variable

ordering (see Section4.3.2) use sifting on each population member, after applying genetic

operators, to find the new local minima.

4.3.2 Genetic Algorithms

The various Genetic Algorithms (GA) found in the literature differ primarily in their re-

combination operators or their fitness metric. The GA approach suggested by Drechsleret

al [Dre96] uses partially matched crossover (PMX) and mutation as the genetic operators.

The PMX operator was found to completely modify the ordering which often lead to ex-

plosive increases in DAG complexity. A later work by Drechsleret al [DG97] suggested
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the use of Inversion and Sifting as genetic operators with a selection probability of 0.5 for

each operator. When Inversion was selected, it was followed by a SIFT operation to obtain

a new local minimum for the search.

A work by Wolfganget al [LB05] suggests the use of alternating crossover with sifting as a

hybridization technique in the genetic algorithm for variable ordering. The fitness for this

GA is calculated based on a distance graph, in which the nodes are variable orders and the

edges are labelled with the minimum number of swaps necessary to transform one order to

another.

All existing work tries to find the optimal variable order that minimizes a BDD while still

maintaining a canonical form. Our objective differs from the above in that we use heuristics

to find the best variable order that minimizes the number of nodes in a BDD but we care

less about canonicity of the final DAG.
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CHAPTER 5: PRELIMINARY TECHNIQUES

This chapter discusses some of the initial techniques the results from which led us to design

some GA-based heuristics.

5.1 Original Bit Order

In the first version BitC compiler, the bits in the variables declared in the input program

were ordered with the lower bits getting lower order number compared to the higher bits.

This variable ordering is shown in Figure5.1. As explained in the previous section the bit

order of a variable influences the walk order of the BDD during normalization.

Figure 5.1: Figure illustrating the default bit order for variables

5.2 Reverse Bit Ordering Technique

Intuitively, because many of the operations performed on multi-bit data involve carry, it

seems reasonable to reorder the bits according to how early they would appear in a carry

chain involving all variables. This is the ordering that we refer to as reversed, because

higher bit positions are given lower-numbered positions in the order (i.e., they appear closer

to the top of the ITE DAGs as drawn in this thesis). For example, the default order shown

in Figure5.1becomes the order given is Figure5.2.
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Figure 5.2: Figure illustrating the reversed bit order for variables

5.2.1 Results

A perl script was used to generate 2,000 random test cases which involved operators like

+, - , * , / , ^ , &, | , %, < <, > >, and%* (which means multiply with result same preci-

sion as operands). A maximum of four variables of up to 5-bit precision each were used,

with a maximum of 3 operators per basic block. All declared variables within each block

had the same bit precision. The Figure5.3 shows the number of live ITEs constituting

the final DAG after applying a reversed bit priority to the Boolean variables input to the

normalization routine.

The plot shows that normalizing the BDD with reversed variable order provides an average

5.72% reduction in the number of nodes as compared to using the default bit order. Clearly,

the reversed bit order is a worthwhile improvement upon the default order, because impos-

ing this order has virtually no additional compiler overhead – the reversed order would be

a better default order.

5.3 Print Form Transformation

Another optimization that can be used in the BitC compiler is not a normalization order

constraint at all, but a more conventional compiler transformation that is based on pattern

matching and does not result in a normalized form. Print Form Transformation (PFT) is a
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Figure 5.3: Scatter plot comparing the number of live ITEs in the final BDD using original
bit order vs. reversed bit order

method suggested by Kevin Karplus [Kar88a] to make If-Then-Else DAGs easier to read

when printed. The normal form of an If-Then-Else DAG is required to have all nodes of

the if- part be earlier in order than all nodes of the then- and the else- parts. The print form

transformations listed in Table5.1are a set of patterns by which nodes in an If-Then-Else

DAG can be rewritten to increase the number of times the constants TRUE and FALSE are

referenced. By this rearrangement of the If-Then-Else DAG, which is a fairly complex and

recursive compiler algorithm in itself, the atoms of the if- part are made disjoint from the

atoms of the then and the else part. The final DAG loses the ordering constraint used for

normalization and hence is non-canonical. In fact, even changing the order of application

of the individual PFT rewrites can produce different result ITE DAGs.

In the KITE Architecture, the constants FALSE and TRUE are hardwired as registers zero
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and one respectively. Increasing the number of times TRUE and FALSE appear in the

DAG increases the number of times a hardwired register is being referenced, thus tend-

ing to reduce the number of references to temporary values in registers (which is closely

related to minimizing maxlive). Applying this technique to the optimizing portion of the

BitC compiler generates If-Then-Else DAGs which have a smaller intermediate DAG size

and a larger final DAG size when compared to the BDDs obtained from Bryant Normal

Form. Note that the output produced by this technique is an If-Then-Else DAG that is not

equivalent to a BDD, as it does not meet the basic structural requirement that the if- part

of a BDD node always must be trivial.

Table 5.1: The Print Form Transformation
Existing Expression Transformed Expression

Transformations involving 3 subDAGs

(if a then(if ba thenbb elseFALSE) elseba) (if (if a thenbb elseTRUE) thenba elseFALSE)

(if a then(if ba thenbb elsebb) elseba) (if (if a thenbb elseTRUE) thenba elseba)

(if a then(if ba thenbbb elseTRUE) elseba) (if (if a thenbb elseTRUE) thenba elseTRUE)

(if a then(if ba thenbb elsebb) elseba) (if (if a thenbb elseTRUE) thenba elseba)

(if a then ca else (if ca then cb else FALSE)) (if (if a then cb else TRUE) then ca else FALSE)

(if a then ca else (if ca then cb else cb)) (if (if a then cb else TRUE) then ca else ca)

(if a then ca else (if ca then cb else TRUE)) (if (if a then cb else TRUE) then ca else TRUE)

(if a then ca else (if ca then cb else cb)) (if (if a then cb else TRUE) then ca else ca)

Transformations involving 4 subDAGs

(if a then (if ba then bb else bc) else bc) (if (if a then ba else FALSE) then bb else bc)

(if a then (if ba then bb else bc) else bb) (if (if a then ba else TRUE) then bb else bc)

(if a then cb else (if ca then cb else cc)) (if (if a then ca else TRUE) then cb else cc)

(if a then cc else (if ca then cb else cc)) (if (if a then ca else FALSE) then cb else cc)

Transformations applied only if result is simpler

(if a then (if ba then bb else bc) else (if ba then cb

else cc))

(if ba then (if a then bb else cb) else (if a then bc

else cc))

(if a then (if ba then bb else bc) else (if ba then cb

else cc))

(if ba then (if a then bb else cc) else (if a then bc

else cb))

5.3.1 Results

A perl program was used to generate 2,000 random test programs and the results were

plotted – the same 2,000 test cases that were used to evaluate the default and reversed
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ordered normalizations. The results showed that applying PFT decreased the number of

temporary ITEs created during the optimization phase when compared to the normalization

techniques, but at the expense of an increased the number of live ITEs in the final DAG.

Figure5.4 shows a marked decrease in the size of the intermediate DAG when applying

PFT to the Boolean functions. Figure5.5shows the increase in the size of final DAG when

applying PFT.

Generating a smaller intermediate DAG is our secondary goal, as small intermediate DAGs

can prevent the compiler from running out of memory when trying to generate the BDD

for a Boolean function. Thus, although PFT is less effective than normalization, it may be

a viable method for handling program fragments for which the normalization processing

required infeasibly many intermediate nodes.

Figure 5.4: Scatter plot comparing the number of nodes in the intermediate ITE DAG when
using PFT as the optimization technique vs. the number of nodes in the intermediate BDD
using normalization as the optimizing technique
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Figure 5.5: Scatter plot comparing the number of nodes in the final ITE DAG when us-
ing PFT as the optimizing technique vs. number of nodes in the final BDD when using
normalization as the optimizing technique
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CHAPTER 6: GA FOR FINDING OPTIMAL VARIABLE ORDER

The Genetic Algorithm (GA) is an adaptive heuristic search technique based on the con-

cepts of evolution and natural selection. During code optimization in the BitC compiler,

a genetic algorithm is used to search for the best possible variable order in terms of mini-

mizing the number of number of live If-Then-Else statements in the generated code.

6.1 GA Details

The various GA parameters used when finding an optimal variable order for the BDD are

listed in this section.

6.1.1 Genome

The genome describes a population member that participates in the evolutionary process.

Each genome encodes the problem specific data in it. This data gets transformed through

a number of generations to produce a solution to the problem. Although the phenotype

for this problem is a variable ordering, the genotype used is slightly more abstract. The

genome for our problem is a string of integers that, when sorted into increasing order, rear-

range the variables into the order of the corresponding phenotype. A genome is permitted

to have duplicate integer values within it, with the resulting phenotype order determined

by how the sorting procedure breaks ties. The initial population consists of randomly-

generated genomes. The GA searches for a solution in this subset of variable orders using

the evolutionary techniques of mutation and crossover.
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6.1.2 Fitness

Fitness is a measure of goodness of a genome in a population of genomes. This measured

fitness of a genome decides its evolutionary path. For the variable ordering problem, fitness

is measured in terms of the number of live ITEs left at the end of compilation. The fittest

genome results in the least number of nodes in the final DAG produced by normalization

using the corresponding phenotype order.

6.1.3 Selection

Selection is a mechanism that decides which individuals get propagated to the subsequent

generations. This GA uses tournament-based selection of genomes. Tournament-based

selection increases a fit individual’s probability of survival. Individuals are partially sorted

by conducting tournaments with other genomes in the population. The most fit individuals

in the current generation tend to move toward the top of the population, while the less fit

individuals move toward the bottom of the population. The bottom portion of the popu-

lation is replaced by new individuals created by using the genetic operators of mutation

and crossover, thus making survival probability higher for the most fit individuals. The

organization of the population in this way offers the additional benefit that only the bot-

tom portion of the population data structures will hold new individuals and they may be

evaluated in a sequence that has inherently good cache locality.

6.1.4 Mutation

Mutation is a genetic operator that helps add diversity to a pool of genomes, thus helping

to prevent the population from getting stuck at a local minimum. For the bit-ordering

problem,random multiple-pointmutation has been employed. Random mutation replaces

randomly selected bit positions (integer values) from a parent genome with new randomly
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generated values.

6.1.5 Crossover

Crossover is the genetic operator that creates new genomes by combining characteristics

from two parents that are better in fitness than the replaced genome. For the bit-ordering

problem,multiple point cross-overhas been employed where a less fit genome gets re-

placed by another genome that is a result of crossing-over better fit parents at multiple

points. The amount of crossover and mutation depends on the user-specified cross over

and mutation rates.

6.1.6 Steady-State Vs. Generational Genetic Algorithm

GAs can be either “steady state” or “generational” in nature. Generational GAs create

an entire population at a time whereas steady state GAs replace a single individual at at

a time. There are benefits to both approaches. The approach used here is essentially a

generational GA, but has many of the benefits of steady state GAs in that it does not re-

evaluate population members that survive from one generation to another.

6.2 Algorithm Description

The GA for variable ordering starts with generating a preset number of random integer

strings to represent the variable orders in the initial population. Word-level operations in

the input program are translated into their bit-level equivalents and expressed using the

If-Then-ElseOperator. These bit-level ITE operations are subject to the normalization

algorithm using the variable order encoded in every population member. The fitness of a

variable order is measured using the number of nodes in the final BDD it generates after the

normalization algorithm. A small number of nodes in the final BDD represents a variable
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order with high fitness and hence a high probability of survival.

The population at the end of a generation is partially sorted based on the fitness of each

genome; the better fit genomes are sorted towards the top of the population and less fit

genomes are towards the bottom. The less fit genomes are tweaked through the processes

of mutation and crossover to produce children which replace the parents in the gene pool.

Mutation is carried out by random replacement of bit order of a less fit population member.

Crossover is carried out by multiple point crossover between two population members

that are higher up in the sorted order to replace a less fit member. Now this new set

of genomes that are slightly better than the previous generation forms the population of

the next generation. This procedure is repeated until a preset number of generations are

reached.

1. Initialize a set random integer strings representing variable orders as the initial indi-
viduals in the population.

2. For a given word-level program generate the corresponding final ITE representation
using the variable orders in the different population members.

3. Evaluate the fitness of each individual in this generation by using the number of ITEs
in the generated code as the metric.

4. Store the fitness value of the fittest variable order string of this generation.

5. Partially sort the variable orders based on their fitness.

6. Apply random multiple point crossover between two randomly selected population
members from the top of the sorted order and replace the variable orders which are
at the bottom of the sorted order.

7. Apply random multiple point mutation on the individuals which are at the bottom of
the sorted order.

8. Evaluate the fitness of this new generation.

9. Update the value for best fit individual.

10. Repeat from Step 2 until specified number of generations are reached.

Algorithm 5: Genetic Algorithm for Variable Ordering
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6.3 Experimental Procedure

At the start of the GA, the bit-level operations expressed usingIf-then-Elseoperators are

recorded in a table. These recorded ITEs together represent a non-canonical ITE DAG

with each table entry corresponding to individual nodes of the ITE DAG. These nodes of

the non-canonical ITE DAG are subject sequentially to the normalization routine using the

variable orders in the current generation of the GA. The normalization routine converts

each node of the initial ITE DAG into a BDD and stores the BDD in another table.

When ITEs are converted to BDDs, a few nodes in the original ITEs may get factored out

to reference an existing node and a few other nodes may generate new BDD nodes. When

sequentially normalizing the ITE entries in the first table, the future nodes which use a prior

node in their if- , then- or else- parts need to be redirected to refer their BDD representation.

For this purpose, a translation table is required between the recorded ITE operations in

the first table and the table which stores the final BDD. The Figure6.1 demonstrates the

queuing and translation of ITEs occurring during the GA.

Figure 6.1: GA data structure diagram

Wolfganget alsuggested that a GA which uses alternating crossover and sifting as the hy-

bridization technique performed better than other types of crossover techniques like order

crossover, cycle crossover, partially matched crossover and inversion. Implementation of
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alternating crossover in the GA used during BitC compilation did not show any uniform

trend in the results.

6.4 Results

The GA was run over a population of 120 individuals for 30 generations with the probabil-

ity of mutation set at 0.16 and the probability of crossover at 0.36. The results plotted in

Figure6.2 and Figure6.3 are from 1,000 randomly generated test programs. Only 1,000

cases were tested because the GA runs fairly slowly, and 1,000 cases seemed to sufficiently

clearly show the performance trends.

Each plot compares the number of nodes in the final BDD generated using the GA variable

order to the number of nodes generated with default and reversed variable orders. When

compared to the original bit order the GA shows a significant decrease in the size of the

final DAG as seen in Figure6.2. When compared to the reversed bit order the GA still

shows some improvement in the size of the final DAG as shown by Figure6.3. Thus, the

GA ordering consistently yielded a modest improvement over the fixed orderings, and is a

better method if compile time allows.
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Figure 6.2: Plot comparing the number of nodes in the final BDD normalized using GA
variable ordering vs. default variable ordering
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Figure 6.3: Plot comparing the number of nodes in the final BDD normalized using GA
variable ordering vs. reversed variable ordering
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CHAPTER 7: BDD VARIABLE ORDERING GA WITH PFT AFTER

NORMALIZATION

From the results in the Figure5.3and Figure5.4it can be inferred that a genetic algorithm

for variable ordering can create huge intermediate BDDs in the process of creating a final

minimized logic. In contrast, PFT has a smaller intermediate DAG size though it results

in a final ITE DAG that is significantly larger. During our testing, very large intermediate

BDDs were created for arithmetic operations which involved >15 bits and caused the GA

to run out of memory space. These observations led us to try a combination of these

techniques that could potentially optimize both the number of ITEs created (size of the

intermediate BDD) and the number of ITEs kept (size of the final BDD).

7.1 Description

While the normalization routine builds BDDs which are in canonical form the PFT con-

verts some BDDs to If-Then-Else DAGs on recognizing identities. Applying normalization

after print form transformation in the optimizing portions of the compiler can help reduce

the size of intermediate DAGs due to additional factoring happening in the if part due to

BDD to If-Then-Else DAG conversion. This conversion can provide more opportunities

for factoring which can lead to smaller final DAGs. By introducing the normalization rou-

tine followed by print form transformation be a part of a GA search for optimal variable

order, many possibilities for optimization are opened up. Algorithm 4 provides the details

on this genetic algorithm.
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7.2 Experimental Procedure

The bit-level ITE equivalents of the word-level operations in the input program to the

compiler, are recorded in a table. The nodes of this non-canonical ITE DAG are played

back in a sequence to the normalization routine. The generated canonical BDD node(s)

are stored in a hash table. The BDD nodes are immediately subject to PFT to recognize

any nodes which can be transformed to ITE DAGs by factorization. The non-canonical

final ITE DAG is stored in another hash table. Two translation tables are required by

this algorithm, one for redirecting node references between the initial ITE DAG and the

normalized BDD and another between the normalized BDD and the final non-canonical

ITE . The data structures and data flow used in this optimizing part of the compiler is

shown in Figure7.1.

Figure 7.1: The data structures and data flow used in the algorithm for GA fitness calcula-
tion
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7.3 Results

The use of PFT after normalization has not proved to be advantageous in the number of live

ITEs or the number of intermediate ITEs. This method leaves many DAGs which are larger

in size than the BDDs generated by the GA in chapter6. It produces some reduction in the

number of ITEs but the number of instances of this decrease in DAG size is very limited

compared to the number of instances in which the DAG size increases in comparison with

our first GA.

In summary, this technique was not effective and probably should never be used in BitC

– a surprising result given that Karplus envisioned PFT would be used after normalization

in essentially this way. The poor performance might be due to the differences between

Karplus’s ITE DAGs and Kentucky ITE DAGs, but that determination is outside of the

scope of this thesis.
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Figure 7.2: Scatter Plot final ITE DAG size when using GA for variable ordering with
PFT after normalization vs. size of the final BDD when using our basic GA for variable
ordering
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1. Initialize a set random integer strings representing variable orders as the initial indi-
viduals in the population.

2. For a given word-level program generate the bit-level ITE representation by issuing
calls to themkiteroutine.

3. Queue the requests for generating ITEs in a table.

4. Evaluate the fitness of each individual in this generation by going through steps 5
through 8.

5. Subject the queued ITEs to the normalization algorithm. Use a translation table to
translate between the queued ITEs and the newly generated normal ITEs.

6. Store the normalized ITEs in a table.

7. Subject the normal ITEs to the print form transformation. Use a translation table to
translate between the normal ITEs and the newly generated ITEs.

8. Store the number of ITEs in the final DAG in a table to serve as the fitness metric.

9. Partially sort individuals based on their fitness.

10. Apply random multiple point crossover between two randomly selected population
members from the top of the sorted order and replace the variable orders which are
at the bottom of the sorted order.

11. Apply random multiple point mutation on the individuals which are at the bottom of
the sorted order.

12. Update the value for best fit individual

13. Repeat from Step 3 until specified number of generations are reached

Algorithm 6: Genetic Algorithm for variable ordering with ITE normalization carried out
before PFT
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CHAPTER 8: BDD VARIABLE ORDERING GA WITH PFT BEFORE

NORMALIZATION

Since the results from the previous section showed that applying PFT after normalization

is disadvantageous the next step was to apply PFT before normalization.

8.1 Description

The assumption behind this technique is that by first converting a function to ITE DAGs,

which are meant to introduce a lot of factorization and then applying normalizing rules

which convert the ITE DAGs to BDDs, the normalization stage would have a fewer ITEs

to start with. When normalization starts with a fewer calls tomkitethen it is reasonable to

expect the technique to have reduction in the number of live ITEs in the generated code.

The natural expectation is that the final normalized form would have the same complexity

in either case. Algorithm 5 provides the details on this genetic algorithm.

8.2 Experimental Procedure

The recorded ITEs equivalents of the word-level input program are first subject to Print-

Form transformation and are later subject to normalization using technique. The initial

non-canonical DAG is further factorized using PFT, which generates a small ITE DAG to

start with for the normalization algorithm when compared to the size of the DAG available

to the normalization algorithm in the GA described in chapter6. This highly factored

non-canonical ITE DAG gets converted to a canonical BDD after normalization. The data

structures and data flow involved in this procedure is depicted in Figure8.1.
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Figure 8.1: The data structures and data flow used in the algorithm for GA fitness calcula-
tion

8.3 Results

The results from this technique compared against our first GA are shown in Figure8.2.

This plot shows that number of nodes in the final ITE DAG islower than our first GA

technique. In most cases this technique produces a savings of 1 or 2 nodes in the final

DAG compared to the first GA technique.

This admittedly modest reduction is none-the-less surprising because the GA normaliza-

tion will produce the same result if the same variable ordering is used – clearly, the same

orderings were not used. It would appear that applying PFT beforehand somehow made

the GA search more effective, presumably by generating a more effective trajectory of met-

rics. In other words, the PFT-processed input tended to have a better correlation between

incremental improvement of the metric and movement toward the global optimum order.

The plot can be seen to show a very few exceptional cases in which the non-PFT input

yielded a better result.

Given the cost of performing the PFT transformations, the additional benefit probably
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comes at too great a compile time cost to be worthwhile for many BitC compilations.

However, it does produce a measurable improvement when time allows, about 0.115%, and

it also opens the unexpected possibility that future work might find other transformations

to apply before normalization so that the GA normalization search is even more effective.

Figure 8.2: Scatter plot comparing the size of final BDD using GA for variable ordering
with PFT before normalization vs. our basic GA for variable ordering
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1. Initialize a set random integer strings representing variable orders as the initial indi-
viduals in the population.

2. For a given word-level program generate the bit-level ITE representation by issuing
calls to themkiteroutine.

3. Queue the requests for generating ITEs in a table

4. Evaluate the fitness of each individual in this generation by going through steps 5
through 8.

5. Subject the queued ITEs to the print form transformation algorithm. Use a translation
table to translate between the queued ITEs and the newly generated non-canonical
ITEs.

6. Store the non-canonical ITEs in a table.

7. Subject the non-canonical ITEs to the normalization algorithm. Use a translation
table to translate between the non-canonical ITE nodes and the newly generated
BDD nodes.

8. Store the number of ITEs in the final DAG in a table to serve as the fitness metric.

9. Partially sort individuals based on their fitness.

10. Apply random multiple point crossover between two randomly selected population
members from the top of the sorted order and replace the variable orders which are
at the bottom of the sorted order.

11. Apply random multiple point mutation on the individuals which are at the bottom of
the sorted order.

12. Update the value for best fit individual

13. Repeat from Step 3 until specified number of generations are reached

Algorithm 7: Genetic Algorithm for variable ordering with ITE normalization carried out
after PFT
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CHAPTER 9: CONCLUSIONS AND FUTURE WORK

Out of the three GA based heuristic techniques designed in this thesis for BDD minimiza-

tion in the BitC compiler, the third GA, is found to produce the best results. This fitness

metric used in this GA measures the number of BDD nodes resulting from factoring non-

canonical ITE DAGs using PFT followed by normalizing the DAGs to convert them into

BDD. Thus this thesis has introduced a new heuristic for minimizing the Kentucky Archi-

tecture DAGs. The techniques introduced in this thesis are not only useful for minimizing

Kentucky Architecture DAGs but can also be directly applied to solving circuit minimiza-

tion problems using BDDs and Karplus’s ITE DAGs.

Future work on the research specific to this thesis could be directed towards:

1. The techniques developed for this thesis can be applied to standard BDD packages

[BRB90] to find out how they compare against existing techniques for variable or-

dering like GAs, sifting, simulated annealing, scatter search etc. The techniques

can also be tested on commercial BDD benchmarks likeLGsynth93 to compare

against other methods.

2. The effect of the nanocontroller variable ordering algorithms on the nanocontroller

GA-based register allocation routine would be an interesting direction to investigate.

3. Improving the GA runtime by terminating the search in a particular direction based

on some DAG growth size criterion.

Future work on the nanocontrollers in general would be:

1. To develop a hardware for the nanocontrollers using conventional CMOS fabrication

methods.
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