17,034 research outputs found

    Blind deconvolution of medical ultrasound images: parametric inverse filtering approach

    Get PDF
    ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.910179The problem of reconstruction of ultrasound images by means of blind deconvolution has long been recognized as one of the central problems in medical ultrasound imaging. In this paper, this problem is addressed via proposing a blind deconvolution method which is innovative in several ways. In particular, the method is based on parametric inverse filtering, whose parameters are optimized using two-stage processing. At the first stage, some partial information on the point spread function is recovered. Subsequently, this information is used to explicitly constrain the spectral shape of the inverse filter. From this perspective, the proposed methodology can be viewed as a ldquohybridizationrdquo of two standard strategies in blind deconvolution, which are based on either concurrent or successive estimation of the point spread function and the image of interest. Moreover, evidence is provided that the ldquohybridrdquo approach can outperform the standard ones in a number of important practical cases. Additionally, the present study introduces a different approach to parameterizing the inverse filter. Specifically, we propose to model the inverse transfer function as a member of a principal shift-invariant subspace. It is shown that such a parameterization results in considerably more stable reconstructions as compared to standard parameterization methods. Finally, it is shown how the inverse filters designed in this way can be used to deconvolve the images in a nonblind manner so as to further improve their quality. The usefulness and practicability of all the introduced innovations are proven in a series of both in silico and in vivo experiments. Finally, it is shown that the proposed deconvolution algorithms are capable of improving the resolution of ultrasound images by factors of 2.24 or 6.52 (as judged by the autocorrelation criterion) depending on the type of regularization method used

    Polynomial spline-approximation of Clarke's model

    Get PDF
    We investigate polynomial spline approximation of stationary random processes on a uniform grid applied to Clarke's model of time variations of path amplitudes in multipath fading channels with Doppler scattering. The integral mean square error (MSE) for optimal and interpolation splines is presented as a series of spectral moments. The optimal splines outperform the interpolation splines; however, as the sampling factor increases, the optimal and interpolation splines of even order tend to provide the same accuracy. To build such splines, the process to be approximated needs to be known for all time, which is impractical. Local splines, on the other hand, may be used where the process is known only over a finite interval. We first consider local splines with quasioptimal spline coefficients. Then, we derive optimal spline coefficients and investigate the error for different sets of samples used for calculating the spline coefficients. In practice, approximation with a low processing delay is of interest; we investigate local spline extrapolation with a zero-processing delay. The results of our investigation show that local spline approximation is attractive for implementation from viewpoints of both low processing delay and small approximation error; the error can be very close to the minimum error provided by optimal splines. Thus, local splines can be effectively used for channel estimation in multipath fast fading channels

    Development and Modelling of High-Efficiency Computing Structure for Digital Signal Processing

    Full text link
    The paper is devoted to problem of spline approximation. A new method of nodes location for curves and surfaces computer construction by means of B-splines and results of simulink-modeling is presented. The advantages of this paper is that we comprise the basic spline with classical polynomials both on accuracy, as well as degree of paralleling calculations are also shown.Comment: 4 Pages, 5 figures, IEEE International Conference on Multimedia, Signal Processing and Communication Technologies, 2009. IMPACT '0

    Gram filtering and sinogram interpolation for pixel-basis in parallel-beam X-ray CT reconstruction

    Full text link
    The key aspect of parallel-beam X-ray CT is forward and back projection, but its computational burden continues to be an obstacle for applications. We propose a method to improve the performance of related algorithms by calculating the Gram filter exactly and interpolating the sinogram signal optimally. In addition, the detector blur effect can be included in our model efficiently. The improvements in speed and quality for back projection and iterative reconstruction are shown in our experiments on both analytical phantoms and real CT images
    • …
    corecore