17,096 research outputs found

    Fully Dynamic Connectivity in O(log⁑n(log⁑log⁑n)2)O(\log n(\log\log n)^2) Amortized Expected Time

    Full text link
    Dynamic connectivity is one of the most fundamental problems in dynamic graph algorithms. We present a randomized Las Vegas dynamic connectivity data structure with O(log⁑n(log⁑log⁑n)2)O(\log n(\log\log n)^2) amortized expected update time and O(log⁑n/log⁑log⁑log⁑n)O(\log n/\log\log\log n) worst case query time, which comes very close to the cell probe lower bounds of Patrascu and Demaine (2006) and Patrascu and Thorup (2011)

    Weighted dynamic finger in binary search trees

    Full text link
    It is shown that the online binary search tree data structure GreedyASS performs asymptotically as well on a sufficiently long sequence of searches as any static binary search tree where each search begins from the previous search (rather than the root). This bound is known to be equivalent to assigning each item ii in the search tree a positive weight wiw_i and bounding the search cost of an item in the search sequence s1,…,sms_1,\ldots,s_m by O(1+logβ‘βˆ‘min⁑(siβˆ’1,si)≀x≀max⁑(siβˆ’1,si)wxmin⁑(wsi,wsiβˆ’1))O\left(1+ \log \frac{\displaystyle \sum_{\min(s_{i-1},s_i) \leq x \leq \max(s_{i-1},s_i)}w_x}{\displaystyle \min(w_{s_i},w_{s_{i-1}})} \right) amortized. This result is the strongest finger-type bound to be proven for binary search trees. By setting the weights to be equal, one observes that our bound implies the dynamic finger bound. Compared to the previous proof of the dynamic finger bound for Splay trees, our result is significantly shorter, stronger, simpler, and has reasonable constants.Comment: An earlier version of this work appeared in the Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithm

    GP-HD: Using Genetic Programming to Generate Dynamical Systems Models for Health Care

    Full text link
    The huge wealth of data in the health domain can be exploited to create models that predict development of health states over time. Temporal learning algorithms are well suited to learn relationships between health states and make predictions about their future developments. However, these algorithms: (1) either focus on learning one generic model for all patients, providing general insights but often with limited predictive performance, or (2) learn individualized models from which it is hard to derive generic concepts. In this paper, we present a middle ground, namely parameterized dynamical systems models that are generated from data using a Genetic Programming (GP) framework. A fitness function suitable for the health domain is exploited. An evaluation of the approach in the mental health domain shows that performance of the model generated by the GP is on par with a dynamical systems model developed based on domain knowledge, significantly outperforms a generic Long Term Short Term Memory (LSTM) model and in some cases also outperforms an individualized LSTM model
    • …
    corecore