10,149 research outputs found

    Increased levels of DNA methyltransferases are associated with the tumorigenic capacity of prostate cancer cells

    Get PDF
    DNA methylation might be the earliest somatic genome changes in prostate cancer that also play an important role in the process of tumor invasion, growth and metastasis. In recent years, several inhibitors of DNA methyltransferases (DNMTis) have been developed and evaluated in pre-clinical models and in clinical trials. While these compounds are effective in the treatment of hematological conditions, clinical trials in solid tumors and in prostate cancer have shown limited or no efficacy. This may be attributed to inappropriate dose regimens leading to toxicity-related adverse events. As with other anti-target compounds, one of the obstacles encountered with DNMTis in prostate cancer could be the inability to select patients for the clinical studies as well as the inability to monitor the efficacy of the drug if not the conclusion of the study. Primary cultures derived from human prostatic tissues harvested from patients with benign prostatic hyperplasia (BPH) and prostate cancer (PCa) as well as neoplastic and non-neoplastic prostate cell lines were tested for DNMT expression/activity and to monitor azacitidine molecular efficacy. We observed that in primary cultures the levels of DNMT activity as well as the protein levels of DNMT1, DNMT3a and DNMT3b were higher in cultures derived from PCa compared to BPH tissue samples and significantly higher in cultures derived from PCa with Gleason scores ≥7 compared to those observed in cultures derived from Gleason scores <7. In addition, DNMT activity as well as DNMT1, DNMT3a and DNMT3b levels were higher in PCa cell lines compared to their non-neoplastic counterparts. Although DNMT activity was higher in high tumorigenic/aggressive PCa cell lines compared to low tumorigenic/aggressive cell lines, only the levels of DNMT3a and DNMT3b were significantly higher in the first group of cells, suggesting that DNMT1 activity is related to the transition to non-neoplastic versus neoplastic phenotype whereas the de novo methylation enzymes were mainly related to progression. Nevertheless, the comparison in the more aggressive PC3 cell derivatives (PC3-LN4 cells) also possessed higher levels of DNMT1 compared to PC3 and PC3M from which these cells were derived. Collectively, our results confirm previous data on the increased methylation in more aggressive tumors supporting the use of DNMTis in advanced prostate cancer. In addition, since glutathione S-transferase-π (GSTP1) was re-expressed or its protein levels were increased after treatment with non-toxic azacitidine doses and since GSTP1 can easily be measured in patient sera, the monitoring of this protein may aide in the evaluation of therapy in future clinical trials

    Optimizing survival outcomes with post-remission therapy in acute myeloid leukemia.

    Get PDF
    Optimization of post-remission therapies to maintain complete remission and prevent relapse is a major challenge in treating patients with acute myeloid leukemia (AML). Monitoring patients for measurable residual disease (MRD) is helpful to identify those at risk for relapse. Hypomethylating agents are being investigated as post-remission therapy. Identification of recurrent genetic alterations that drive disease progression has enabled the design of new, personalized approaches to therapy for patients with AML. Emerging data suggest that targeted post-remission therapy, alone or in combination with chemotherapy, may improve outcomes. Results of ongoing clinical trials will further define potential clinical benefits

    Role of Epigenetic Modification and Immunomodulation in a Murine Prostate Cancer Model

    Get PDF
    INTRODUCTION. Decreased expression of highly immunogenic cancer-testis antigens (CTA) might help tumor to achieve low immunogenicity, escape immune surveillance and grow unimpeded. Our aim was to evaluate CTA expression in tumor and normal tissues and to investigate possible means of improving the immune response in a murine prostate cancer (CaP) model by using the combination of epigenetic modifier 5-azacitidine (5-AzaC) and immunomodulator lenalidomide. No study to date has examined the effect of this combination on the prostate cancer or its impact on antigen-presenting cells (APC). MATERIALS AND METHODS. Gene microarrays were performed to compare expression of several CTA in murine prostate cancer (RM-1 cells) and normal prostate. RM-1 cells were treated with 5-AzaC and real-time PCR was performed to investigate the expression of several CTA. Western blotting was used to determine whether expression of CTA-specific mRNA induced by 5-AzaC resulted in increase in the corresponding protein. Effect of the epigenetic agents and immunomodulators was assessed on dendritic cells (DC) using flow cytometry, ELISA and T-cell proliferation assay. RESULTS. Gene arrays demonstrated decreased expression of 35 CTA in CaP tissue compared to normal prostate. 5-AzaC treatment of RM-1 prostate cancer cells upregulated the expression of all 13 CTA tested in a dose-dependent fashion. DC were treated with 5-AzaC and lenalidomide and the expression of surface markers MHC Class I, MHC Class II, CD80, CD86, CD 205, and CD40 was increased. Combination of 5-AzaC and lenalidomide enhances the ability of DC to stimulate T-cell proliferation in mixed leukocyte reaction. Secretion of IL-12 and IL-15 by DC increased significantly with addition of 5-AzaC or 5-AzaC and lenalidomide. CONCLUSIONS. Decreased expression of CTA by prostate cancer may be a means of escaping immune monitoring. Combination of epigenetic modifications and immunomodulation by 5-AzaC and lenalidomide increased tumor immunogenicity and enhanced DC function and may be used in the treatment of advanced prostate cancer

    Increased expression and activity of p75NTR are crucial events in azacitidine-induced cell death in prostate cancer

    Get PDF
    The high affinity nerve growth factor (NGF) NGF receptor, p75NTR, is a member of the tumor necrosis factor (TNF) receptor superfamily that shares a conserved intracellular death domain capable of inducing apoptosis and suppressing growth in prostate epithelial cells. Expression of this receptor is lost as prostate cancer progresses and is minimal in established prostate cancer cell lines. We aimed to verify the role of p75NTR in the azacitidine-mediated antitumor effects on 22Rv1 and PC3 androgen-independent prostate cancer cells. In the present study, we reported that the antiproliferative and pro-apoptotic effects of 5-azacytidine (azacitidine) were more marked in the presence of physiological concentrations of NGF and were reduced when a blocking p75NTR antibody or the selective p75NTR inhibitor, Ro 08-2750, were used. Azacitidine increased the expression of p75NTR without interfering with the expression of the low affinity NGF receptor TrkA and induced caspase 9-dependent caspase 3 activity. Taken together, our results suggest that the NGF network could be a candidate for future pharmacological manipulation in aggressive prostate cancer

    Feasibility of azacitidine added to standard chemotherapy in older patients with acute myeloid leukemia - a randomised SAL pilot study

    Get PDF
    INTRODUCTION: Older patients with acute myeloid leukemia (AML) experience short survival despite intensive chemotherapy. Azacitidine has promising activity in patients with low proliferating AML. The aim of this dose-finding part of this trial was to evaluate feasibility and safety of azacitidine combined with a cytarabine- and daunorubicin-based chemotherapy in older patients with AML. TRIAL DESIGN: Prospective, randomised, open, phase II trial with parallel group design and fixed sample size. PATIENTS AND METHODS: Patients aged 61 years or older, with untreated acute myeloid leukemia with a leukocyte count of <20,000/µl at the time of study entry and adequate organ function were eligible. Patients were randomised to receive azacitidine either 37.5 (dose level 1) or 75 mg/sqm (dose level 2) for five days before each cycle of induction (7+3 cytarabine plus daunorubicine) and consolidation (intermediate-dose cytarabine) therapy. Dose-limiting toxicity was the primary endpoint. RESULTS: Six patients each were randomised into each dose level and evaluable for analysis. No dose-limiting toxicity occurred in either dose level. Nine serious adverse events occurred in five patients (three in the 37.5 mg, two in the 75 mg arm) with two fatal outcomes. Two patients at the 37.5 mg/sqm dose level and four patients at the 75 mg/sqm level achieved a complete remission after induction therapy. Median overall survival was 266 days and median event-free survival 215 days after a median follow up of 616 days. CONCLUSIONS: The combination of azacitidine 75 mg/sqm with standard induction therapy is feasible in older patients with AML and was selected as an investigational arm in the randomised controlled part of this phase-II study, which is currently halted due to an increased cardiac toxicity observed in the experimental arm

    Phase I study of azacitidine and oxaliplatin in patients with advanced cancers that have relapsed or are refractory to any platinum therapy.

    Get PDF
    BackgroundDemethylation process is necessary for the expression of various factors involved in chemotherapy cytotoxicity or resistance. Platinum-resistant cells may have reduced expression of the copper/platinum transporter CTR1. We hypothesized that azacitidine and oxaliplatin combination therapy may restore platinum sensitivity. We treated patients with cancer relapsed/refractory to any platinum compounds (3 + 3 study design) with azacitidine (20 to 50 mg/m(2)/day intravenously (IV) over 15 to 30 min, D1 to 5) and oxaliplatin (15 to 30 mg/m(2)/day, IV over 2 h, D2 to 5) (maximum, six cycles). Platinum content, LINE1 methylation (surrogate of global DNA methylation), and CTR1 expression changes (pre- vs. post-treatment) were assessed. Drug pharmacokinetics were analyzed.ResultsThirty-seven patients were treated. No dose-limiting toxicity (DLT) was noted at the maximum dose. The most common adverse events were anemia and fatigue. Two (5.4%) patients had stable disease and completed six cycles of therapy. Oxaliplatin (D2) and azacitidine (D1 and 5) mean systemic exposure based on plasma AUCall showed dose-dependent interaction whereby increasing the dose of oxaliplatin reduced the mean azacitidine exposure and vice versa; however, no significant differences in other non-compartmental modeled parameters were observed. Blood samples showed universal reduction in global DNA methylation. In tumor samples, hypomethylation was only observed in four out of seven patients. No correlation between blood and tumor demethylation was seen. The mean cytoplasmic CTR1 score decreased. The pre-dose tumor oxaliplatin levels ranged from &lt;0.25 to 5.8 μg/g tumor. The platinum concentration increased 3- to 18-fold. No correlation was found between CTR1 score and oxaliplatin level, which was found to have a trend toward correlation with progression-free survival.ConclusionsOxaliplatin and azacitidine combination therapy was safe. CTR1 expression was not correlated with methylation status or tissue platinum concentration

    RRx-001 in Refractory Small-Cell Lung Carcinoma: A Case Report of a Partial Response after a Third Reintroduction of Platinum Doublets.

    Get PDF
    RRx-001 is a pan-active, systemically nontoxic epigenetic inhibitor under investigation in advanced non-small cell lung cancer, small-cell lung cancer and high-grade neuroendocrine tumors in a Phase II clinical trial entitled TRIPLE THREAT (NCT02489903), which reexposes patients to previously effective but refractory platinum doublets after treatment with RRx-001. The purpose of this case study is first to report a partial response to carboplatin and etoposide in a patient with small-cell lung cancer pretreated with RRx-001, indicating episensitization or resensitization by epigenetic mechanisms, and second to discuss the literature related to small-cell lung cancer and episensitization
    corecore