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Role of Epigenetic Modification and Immunomodulation in
a Murine Prostate Cancer Model

Jay E. Sulek,1* Samuel P. Robinson,1 Albert A. Petrossian,1 Shaoqing Zhou,1

Ekaterine Goliadze,1,2 Masoud H. Manjili,2,3 Amir Toor,2 and Georgi Guruli1,2

1Division of Urology, Department of Surgery, Virginia Commonwealth University Medical Center,
Richmond, Virginia

2Massey Cancer Center, Virginia Commonwealth University Medical Center, Richmond, Virginia
3Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine,

Richmond, Virginia

INTRODUCTION. Decreased expression of highly immunogenic cancer-testis antigens
(CTA) might help tumor to achieve low immunogenicity, escape immune surveillance and
grow unimpeded. Our aim was to evaluate CTA expression in tumor and normal tissues and
to investigate possible means of improving the immune response in a murine prostate cancer
(CaP) model by using the combination of epigenetic modifier 5-azacitidine (5-AzaC) and
immunomodulator lenalidomide. No study to date has examined the effect of this
combination on the prostate cancer or its impact on antigen-presenting cells (APC).
MATERIALS AND METHODS. Gene microarrays were performed to compare expression
of several CTA in murine prostate cancer (RM-1 cells) and normal prostate. RM-1 cells were
treated with 5-AzaC and real-time PCR was performed to investigate the expression of
several CTA. Western blotting was used to determine whether expression of CTA-specific
mRNA induced by 5-AzaC resulted in increase in the corresponding protein. Effect of the
epigenetic agents and immunomodulators was assessed on dendritic cells (DC) using flow
cytometry, ELISA and T-cell proliferation assay.
RESULTS. Gene arrays demonstrated decreased expression of 35 CTA in CaP tissue compared
to normal prostate. 5-AzaC treatment of RM-1 prostate cancer cells upregulated the expression
of all 13 CTA tested in a dose-dependent fashion. DC were treated with 5-AzaC and
lenalidomide and the expression of surface markers MHC Class I, MHC Class II, CD80, CD86,
CD 205, and CD40 was increased. Combination of 5-AzaC and lenalidomide enhances the ability
of DC to stimulate T-cell proliferation in mixed leukocyte reaction. Secretion of IL-12 and IL-15
by DC increased significantly with addition of 5-AzaC or 5-AzaC and lenalidomide.
CONCLUSIONS. Decreased expression of CTA by prostate cancer may be a means of
escaping immune monitoring. Combination of epigenetic modifications and immunomodu-
lation by 5-AzaC and lenalidomide increased tumor immunogenicity and enhanced DC
function and may be used in the treatment of advanced prostate cancer. Prostate 77: 361–373,
2017. # 2016 Wiley Periodicals, Inc.

KEY WORDS: 5-azacitidine; epigenetic modulation; prostate cancer; dendritic cells;
lenalidomide

INTRODUCTION

The mainstay therapy for advanced prostate cancer is
androgen deprivation therapy. However, following an
initial period of positive response, prostate cancer over
time becomes resistant to hormone therapy. Few options
are available at that time and no treatment provides
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long-term survival or cure. There is therefore an urgent
need to develop alternative effective treatment modali-
ties for advanced prostate cancer. In this article, we
explored the value of epigenetic modification and
immunomodulation in the prostate cancer environment.

One type of epigenetic aberration is DNA methyla-
tion which can occur as either hypo- or hypermethyla-
tion. Both forms can lead to chromosomal instability
and transcriptional gene silencing and both have been
implicated in a variety of human malignancies including
prostate cancer [1]. Unlike genetic alterations such as
mutations, epigenetic changes such as DNA methylation
are potentially reversible. This property makes epige-
netic modulation an attractive target for cancer therapy.

Although the list of epigenetically regulated genes
continues to grow, only a few genes have, so far, given
promising results as potential tumor biomarkers for
early diagnosis and risk assessment of prostate cancer.
Thus, large-scale screening of aberrant epigenetic
events such as DNA hypermethylation is needed to
identify prostate cancer-specific epigenetic finger-
prints. More studies into the mechanism and conse-
quence of demethylation are required before the
cancer epigenome can be safely manipulated with
therapeutics as a treatment modality.

5-Azacytidine and 5-aza-20-deoxycytidine, nucleo-
side analog inhibitors of DNA methyltransferases
(DNMT), have been widely used to reverse abnormal
DNA hypermethylation and restore silenced gene
expression. This induces changes which may be
associated with development of a favorable pheno-
type in prostate cancer and could potentially be
exploited in cancer immunotherapy.

One of the goals of cancer immunotherapy has
been to find tumor-associated antigens (TAA) suitable
as specific targets for immunotherapy. The ideal TAA
is only expressed on tumor cells, is indispensable to
tumor cell function, is expressed on most or all tumor
cells, and induces a strong host immune response.
Cancer testis antigens (CTA) are a group of in many
cases highly immunogenic TAA expressed in embry-
onic stem cells and testicular germ cells which have
attracted interest as potential targets of immunother-
apy [2]. Despite the fact that most human malignan-
cies simultaneously express multiple CTA, immune
response to those antigens seems limited. In part, this
is due to levels of expression that may be below the
threshold for immune recognition in vivo. Epigenetic
events, particularly DNA methylation, appear to be
the primary mechanism regulating CTA expression in
both normal and transformed cells, as well as in
cancer stem cells [3–6].

Better antigen expression is not the only require-
ment of the immune response. Immune response
must be tailored to that antigen. In this regard, we are

exploring the impact of the immunomodulator lenali-
domide—which has been shown to augment both
innate and adaptive immune response and to improve
antitumor effect [7–9]—in combination with DNA
methylation inhibitors.

MATERIALS AND METHODS

Mice

Male C57BL/6 mice 6–8 weeks old and male
BALB/c mice 6–8 weeks old were obtained from
Taconic Farms (Germantown, NY). Animals were
maintained at the Central Animal Facility at the
Virginia Commonwealth University according to
standard guidelines. All protocols used in this study
were approved by the VCU Institutional Animal Care
and Use Committee (IACUC).

Dendritic Cells

DC were generated from mice bone marrow cell
precursors. Bone marrow cells were collected from tibias
and femurs of Male C57BL/6 animals and resuspended
in complete media, consisting of RPMI 1640 medium
supplemented with 10% Heat Inactivated Fetal Bovine
Serum (Gemini Bio-Products, West Sacramento, CA),
1mM sodium pyruvate (Quality Biological, Inc.,
Gaithersburg, MD), 10mM MEM Non-Essential Amino
Acids (Gibco), 100U/ml penicillin (Gibco), 100mg/ml
streptomycin (Gibco). The cell suspension was disrupted
by pipetting, filtered through a 70-mm filter, and then
cells were depleted of RBC with ACK lysing buffer
(Quality Biological, Inc., Gaithersburg, MD) for 2–3min.
Cells were incubated overnight in six-well plates at a
concentration of 106 cells/ml in 4ml of complete media
per well. The next day, non-adherent cells were collected
by gentle pipetting and were then resuspended at a
concentration of 250,000 cells/ml in complete medium.
Both recombinant murine GM-CSF (Invitrogen,
Carlsbad, CA) and recombinant murine IL-4 (Gemini
Bio-Products, West Sacramento, CA) were added to a
final concentration of 50ng/ml. Cells were cultured in
six-well plates (4ml/well) for 7 days at 37°C in a
humidified atmosphere containing 5% CO2 with an
additional supplementation of GM-CSF and IL-4 on
Day 4. For differentiation into mature DC, cells were
additionally stimulated on Day 5 with 50ng/ml TNFa
(Invitrogen, Carlsbad, CA) for 48hr. On Day 7, immature
and mature dendritic cells were harvested for further
studies.

Prostate Cancer Cell Line

RM-1 cell line is an androgen-independent murine
prostate cancer cell line. It was a gift from Dr. Timothy
C. Thompson (Baylor College of Medicine, Houston,
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TX). This model was generated by transduction of
cells with the ras and myc oncogenes, yielding a
poorly differentiated adenocarcinoma. Tumor cells
were maintained in complete media at 37°C in 5%
CO2. For in vivo studies, RM-1 cells (50,000 cells/
100ml) were inoculated subcutaneously (SC) into the
right shaved flank of C57BL/6 mice, and tumor
establishment was determined by palpation. Tumor
growth was assessed every other day by microca-
lipers. Mice were euthanized when tumors reached a
volume of 3,000mm3 or if the mice became moribund
or cachectic.

Study Compounds

Lenalidomide and 5-AzaC were free gifts from
Celgene Corporation (Summit, NJ). Lenalidomide
was dissolved in 100% dimethylsulfoxide (DMSO)
(Sigma-Aldrich, St. Louis, MO) before further dilution
in cell culture media. Final DMSO concentrations
were kept at a constant 0.1% for all samples, including
controls, unless otherwise stated. Lenalidomide was
used at a final concentrations of 0.5, 1.0, 2.0 and
10mM. 5-AzaC was dissolved as 1.0mmol/L stock
solution in PBS and stored at �20°C. 5-AzaC was
added to tissue culture medium daily at final concen-
trations of 1.0 and 0.5mM. Both drugs were main-
tained as stock solutions for in vitro experiments at
�20°C for no longer than 1 month.

Cell Proliferation Assay

Cell proliferation was measured using a colori-
metric assay with WST-1 reagent, which quantifies
mitochondrial metabolic activity of viable cells per
manufacturer’s instructions (Roche, Indianapolis,
IN). Cells were cultured in 96-well microplates in a
concentration of 5� 104 cells/ml (in RPMI with 10%
FBS) and cultivated for 48 hr in a humidified
atmosphere (37.0°C; 5% CO2). After 44 hr, 10ml of
WST-1 was added and cells were incubated for an
additional 4 hr. During this incubation period, via-
ble cells convert WST-1 to a water soluble formazan
dye. Cell viability was measured at 450 nm in a
microplate reader (Bio Rad) (Reference wavelength:
655 nm). Combined results of three experiments are
presented.

Annexin V Assay

DC were collected and double stained with
FITC-conjugated annexin V and 7-AAD, according to
the manufacturer’s instructions (Biolegend, San Diego,
CA). Briefly, DC were collected after 48hr of culture
under different conditions, washed twice with cold

Biolegend’s Cell Staining Buffer and then resuspended
in Annexin V Binding Buffer at a concentration of
105 cells/ml. Cells were incubated with Annexin
V-FITC and 7-AAD for 15min at room temperature.
After washing steps, all samples were analyzed within
30min. Data were acquired using a BD FACSCANTO
II benchtop analyzer (Becton Dickinson, San Jose, CA)
and analysis was performed using BD FACSDiva
software (BD) and FCS Express (De novo software, Los
Angeles, CA).

Flow Cytometry

DC phenotype was evaluated using flow cytometry
analysis. Dendritic cells were collected and suspended
in FACS buffer (1% FCS and 15mM NaN3 in PBS).
Cells were preincubated for 15min with immunoglob-
ulin constant Fragment (FC)—receptor blocking anti-
body (purified anti-CD16/CD32, Clone 93) to reduce
nonspecific binding. Then dendritic cells were stained
for 20min at 4°C with optimal dilution of relevant
antibodies directly conjugated with Alexa Fluor or
PE. The following mAbs (clone name given in
parentheses) were used: Alexa Fluor-labeled anti-
mouse CD11c (clone N418, Invitrogen) and PE-labeled
anti-mouse CD40 (clone 3/23, Invitrogen), F4/80
(clone BM8, Invitrogen), CD86 (clone P0.3, Invitro-
gen), MHC class II (I-A) (clone NIMR-4, eBioscience,
San Diego, CA), CD205 (clone NLDC-145, Miltenyi
Biotec, San Diego, CA), I-Ad/I-Ed (clone 2G9, Becton
Dickinson, San Jose, CA). DC were identified based
on forward scatter, CD11c expression and low auto
fluorescence. We collected 10,000 events per sample.
Data were acquired using a BD FACSCANTO II
benchtop analyzer (Becton Dickinson, San Jose, CA)
and analysis was performed using BD FACSDiva
software (BD) and FCS Express (De novo software,
Los Angeles, CA).

Cytokine Detection Assay

DC culture supernatants were harvested and cellu-
lar debris was removed by centrifugation. Concentra-
tion of soluble cytokines IL-12-p70 and IL-15 were
measured by eBioscience’s (San Diego, CA) quantita-
tive enzyme-linked immunosorbent assays. Briefly,
96-well Corning Costar ELISA plates were coated
with the appropriate capture antibodies overnight.
After blocking the plates and a further 2 hr incubation
with supernatants or standard, the plates were devel-
oped using biotin-conjugated anticytokine antibodies.
Samples and standards were run as triplicates in
every assay, and were read at 450 nm wavelength on a
benchmark microplate reader (Bio-rad, Hercules, CA).
Cytokine concentrations were normalized based on
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cell counts and determined by computer software-
generated interpolation from the standard curve.
They are presented as pmol/ml.

RNA Isolation

At the time of euthanasia, tissues were harvested in
an RNase-free manner. Tumor or normal prostate
were either snap frozen in liquid nitrogen and stored
at �80°C until RNA isolation or used immediately for
RNA isolation. RNA from snap frozen tissue or fresh
tissue was routinely isolated by TRIzol (Invitrogen,
Carlsbad, CA). For that, tissue was placed in cold
TRIzol (4°C) and immediately homogenized using a
Bio-Gen PRO200 Homogenizer (Pro scientific Inc.,
Oxford, CT) The protocol for TRIzol isolation was
then completed following the manufacturer’s instruc-
tions. Isolated RNA was purified with an RNeasy
Mini Kit (Qiagen, Valencia, CA). RNA yields were
determined spectrophotometrically at 260 nm.

Gene Microarray

Affymetrix GeneChip Mouse Genome 430 V2.0 was
used for RM-1 cells and normal murine prostate tissue
cells with 45000 probes. Following the RNA isolation
procedure, synthesis of double-stranded cDNA was
performed using the GeneChip 30 IVT Plus Reagent kit
from Affymetrix (Santa Clara, CA). For first-strand
cDNA synthesis, a T7-Oligo(dT) primer containing a
T7 promoter site was used. After second-strand synthe-
sis, the double-stranded cDNAwas used as a template
for in vitro transcription. In this step, labeled comple-
mentary RNA (cRNA) was synthesized and amplified
by in vitro transcription (IVT) of the second-stranded
cDNA template using T7 RNA polymerase. The cRNA
was then purified to remove enzymes, salts, inorganic
phosphates and unincorporated nucleotides. Following
quantitation at A260, the labeled cRNAwas fragmented
to 35–200 base fragments by divalent cations and
elevated temperature. Fifteen mg of fragmented cRNA
were hybridized for sixteen hours at 45°C in the
appropriate GeneChip Probe Array using the
GeneChip Hybridization Oven. Spiked hybridization
controls include labeled transcripts from Escherichia
coli bioB, bioC and bioD, cre from bacteriophage P1,
and synthetic Oligo B2. Following hybridization, the
arrays were washed and stained in an Affymetrix
GeneChip Fluidics Station. Staining was done in a
three-step procedure starting with a streptavidin-phy-
coerythrin staining solution, followed by incubation
with biotinylated antistreptavidin and finally a second
staining with streptavidin-phycoerythrin. Stained
arrays were scanned using Affymetrix GeneChip Scan-

ner. Analysis of data was performed using the Affyme-
trix Expression Console Software. In a basic initial
analysis, genes that had fold change values of >1.0
and a P-value <0.05 were considered significantly
differentially expressed for analysis.

Quantitative Real Time Polymerase Chain
Reaction (qRT-PCR)

After RNA isolation, cDNA was synthesized using
the ThermoScript RT-PCR System (Invitrogen) from
1mg of total RNA using Random Primer. In each
experiment, at least three independent reactions were
performed to obtain the mean. QRT-PCR was per-
formed in triplicate including a non-template control
using the Mx3000P system (Agilent Technologies, Inc.,
Santa Clara, CA). Oligos (Invitrogen) were designed
using Primer3 software (White head Institute of
Biomedical Research MIT. Boston, MA), and are
presented in Table I. GAPDH and P1A Primers were
obtained from Qiagen.

Real-time RT-PCR reactions were performed in
20ml volumes with 10ml of SensiFAST SYBR Lo-ROX
Kit (Bioline, Taunton, MA) 2ml of cDNA template and
0.5ml each of the forward and reverse primers of the
gene of interest (GOI). The cDNA used for the PCR
reactions was diluted 1:35 for each GOI. PCR con-
ditions were as follows: an initial denaturation step
(10min at 95°C), 40 cycles consisting of three steps-
(30 sec at 95°C, 1min at 55°C, 30 sec at 72°C), and 1
cycle consisting of three steps (1min at 95°C, 30 sec at
55°C, and 30 sec at 95°C). The cycle threshold (CT)
value was the PCR cycle number in which the
fluorescence signal was significantly distinguishable
from the baseline for the first time.

The housekeeping gene (GAPDH) was used as an
endogenous control for target gene expression evalua-
tion. Expression values of each gene were normalized
to the expression of GAPDH of a given sample. Data
were presented by the relative amount of mRNAwith
the formula 2�DDCT, which stands for the difference
between the CT of a gene of interest and the CT of the
housekeeping gene (GAPDH).

Western Blots

For Western blot analyses, protein was harvested
from cells plated to 70–80% confluence. Cells were
homogenized in RIPA lysis buffer (20mM tris, 50mM
NaCl, 2mM EDTA, 2mM EGTA, 1% sodium deoxy-
cholate, 1% Triton X–100 (TX-100), and 0.1% SDS, pH
7.4), containing a protease inhibitor cocktail (1:100,
Sigma) and phosphatase inhibitor cocktails 1 and 3
(both at 1:200, Sigma). Lysates were cleared by
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centrifugation (20min at 14,000g), diluted with 2�
SDS sample buffer and boiled.

Immunoblotting was conducted by standard
protocols with an equal amount of total protein
(10mg) per lane. The protein extracts were loaded,
size-fractionated by SDS-polyacrylamide gel elec-
trophoeresis and transferred to PVDF membranes
(Bio-Rad Laboratories). After blocking, the mem-
branes were incubated with the specific rabbit
polyclonal antibodies in dilution buffer at
4°C overnight. The blotted membranes were incu-
bated with HRP-conjugated goat anti-rabbit IgG
(1:1,000) at room temperature for 2 hr. Subse-
quently, the targeting protein expression level was
detected and visualized using the Enhanced Chemi-
luminescence (ECL) detection system. Primary anti-
bodies Cyclin A1 (H-230) and CEP55 (H-300) (Santa
Cruz Biotechnology) were used at 1:500 dilution.
GAPDH was used as the internal control.

T Cell Proliferation Assay

Functional activity of DC was determined in the
primary allogeneic mixed leukocyte reaction (MLR)
assay using mouse T lymphocytes as responder cells.
DC used as stimulators and were generated from
bone marrow progenitors of C57BL/6 mice.

Allogeneic T cells, obtained from the spleens of
BALB/c mice, served as responders. T cells were
generated using mouse T cell enrichment columns
(R&D Systems, Minneapolis, MN). Dendritic cells
were stimulated with TNFa and treated with different
concentrations of 5-AzaC. DC were collected after
48 hr of culture under different conditions, washed
twice to remove any cytokine and cocultured with
freshly purified 3� 105 Allogenenic CD3þ T cells. The
MLR assays were carried out in round bottomed
96-well plates where DC were added in triplicates in
graded doses (103–105 cells/well) to T cells (3� 105

cells/well) in a total volume of 200ml. Proliferation of
T cells was measured by uptake of 3H-thymidine (1
Ci/well, 5 Ci/mmol;) pulsed for 16–18hr after 3 days
in culture. Incorporation of 3H-thymidine was deter-
mined on a LS 6500 Scintillation System (Beckman
Coulter, Fullerton, CA).

Statistical Analysis

The Student t test was used for comparison of two
groups (SigmaPlot Software; SPSS, Chicago, IL). If data
distribution was not normal, the Mann–Whitney rank
sum test was used instead. A z-test was performed to
evaluate the significance of differences between the
experimental groups in the flow cytometry assays

TABLE I. Primers for Polymerase Chain Reaction (PCR)

Gene Accession number Primer sequence (50 to 30) Product length

Ccna1 NM_007628 Forward � GAAGAACCTGAGAAGCAGGGC 131 bp
Reverse � AGCTCTGCTGAGCATTTGACA

Adam2 NM_009618 Forward � AGGTGCATTACTCTACGCCG 147 bp
Reverse � TCAGCCCCGATATGCTCAAA

Cep55 NM_028760 Forward � GAAAAACTCGACCGCCAGAA 100 bp
Reverse � GCTGCAAGGATTCCAACTGT

Tex15 NM_031374 Forward � GCTTCTCATCAACCAGTCCCA 118 bp
Reverse � AAGGCCTTCGTAGAAACGGAT

Spa17 NM_011449 Forward � CGCACCAGCTTGAAGAGAAAG 90bp
Reverse � ATTCGGTAGTGGGTGTTGGA

Tdrd1 NM_001002238 Forward � GGTCTTCCCACAGCACCATCT 126 bp
Reverse – TAACTCCCGGGGGACAGTCAA

Ndn NM_010882 Forward � TCTGCGGGAGGCTAATCTTG 121 bp
Reverse � TCAACCCCACCCTTACACAG

Akap4 NM_009651 Forward � GAGTCATCGCAGCATCCAAA 135 bp
Reverse � AAGATCTACCTTGCACACGC

Acrbp NM_016845 Forward � TACCTGCACCATGACTCCCAC 98bp
Reverse � GTCGCCTTCCGAGATTGTCAC

Odf4 NM_145746 Forward � GGCTCCTGTACATCTGCGTA 140 bp
Reverse � GAGGACAAAACCCAGCCCTA

Dkkl1 NM_015789 Forward � CGACTCTCAGCAGAACACCT 102 bp
Reverse � TTGTCCAGGTCTCGTAGCAG

Boris NM_001081387 Forward � CAAGTGCTCCCTGTGCAAGTAC 70bp
Reverse � CGTGTGTGAGCGGATGTGA
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when discrete data were presented. For all analysis, the
level of significance was set at a probability of 0.05 to
be considered significant. Data are presented as the
mean� standard error of the mean (SEM).

RESULTS

Influence of 5-AzaC and Lenalidomide on RM-1
Cells Proliferation

Cell proliferation assay. RM-1 cells in suspension
were exposed to 4 different concentrations of lenalido-
mide (0.5, 1.0, 2.0, and 10mM). A DMSO control and
one group with no treatment were also included. The
cell proliferation assay was then performed. The differ-
ences in cell proliferation between groups did not
reach statistical significance. For 5-AzaC, 2 different
concentrations (0.5 and 1.0mM) were used. One group
with no treatment was also included as a control. Cell
proliferation decreased in a dose-dependent fashion
with increasing concentrations of 5-AzaC. The differ-
ence between the control and RM-1 cells treated with
both concentrations of 5-AzaC were statistically signifi-
cant (P¼ 0.016 for the group treated with the concen-
tration of 0.5mM and P¼ 0.004 for the group treated
with the concentration of 1.0mM of 5-AzaC). There
was no statistically significant difference between the
5-AzaC treated groups. Addition of lenalidomide
(0.5mM) did not significantly affect cell proliferation.

Dendritic Cell Apoptosis Induced by 5-Azacitidine
and Lenalidomide

We utilized Annexin V/7-ADD staining to establish
noncytotoxic concentrations for 5-AzaC and lenalido-
mide. Cells were treated with various concentrations
of 5-AzaC and lenalidomide alone and in combina-
tion. Results are presented in Figure 1. Apoptosis was
increased with higher concentrations of 5-AzaC alone.
Lenalidomide had a milder effect on DC death as
concentration increased. Addition of lenalidomide to
5-AzaC seems to lower apoptotic rate at lower concen-
trations of 5-AzaC, but higher concentrations of
5-AzaC still seems to be quite toxic to DC. These
experiments allowed the establishment of nontoxic
concentrations of these compounds for ex vivo
studies.

Expression of Co-Stimulatory Molecules on
Dendritic Cells

Dendritic cells initiate T-cell activation by pre-
senting MHC-bound antigen and co-stimulation
markers to the naive T-cell. The maturation status

of DC is a key factor required for the induction
of a specific immune response, and relies on the
presentation of antigens by fully mature DC. Lena-
lidomide (0.5mM), 5-AzaC (1.0mM) and the combi-
nation of the two were added during the last 48 hr
of culture after which time DC were harvested,
stained with antibodies for MHC class I, MHC class
II, CD40, CD80, CD86, and CD205 and flow cytom-
etry was performed. The experiment was repeated
three times and the composite results are presented
in Figure 2. As demonstrated, there was an increase
in the expression of all DC markers when exposed
to lenalidomide or 5-AzaC. The greatest increase in
markers was seen with the combination of the two
drugs, and that increase in expression was between

Fig. 1. Rate of DC apoptosis by Annexin V assay after exposing
DC to different combinations of 5-azaC and lenalidomide. Mature
DC (DCþTNFa) were treated either with 5-AzaC or Lenalido-
mide for 48 hr and drug-induced apoptosis was assessed by
Annexin V binding assay. Untreated mature DC served as a
control. After 48 hr of treatment, DC were collected, stained
with Annexin V and propodium iodide (PI) and flow cytometry
was performed for annexin-positive (early and late apoptotic)
cells. Data were acquired using BD FASCANTO II benchtop
analyzer (Becton Dickinson, San Jose, CA). The percentage of
apoptotic cells was analyzed by BD FACSDiva software (BD) and
FCS Express (De novo software, Los Angeles, CA). High
concentration of 5-AzaC proved to be significantly toxic to DC.
DC, dendritic cells; mDC, mature DC, 5-AzaC, 5-azacitidine; Len,
lenalidomide. �Depicts statistically significant difference in com-
parison to mature DC.
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Fig. 2. DC were analyzed after 7 days of culture with GM-CSF and IL-4, with addition of TNFa for the last 48 hr Lenalidomide (0.5mM)
and 5-AzaC (1.0mM) were added alone or in combination to the DC culture during the last 48 hr, together with TNFa. DC treated with
DMSO (0.1%, solvent for lenalidomide) provided control. Treated cells were harvested and washed in FACS buffer and stained with
appropriately diluted antibodies directly conjugated with Alexa Flour or PE. DC were evaluated phenotypically by flow cytometry to assess
expression of surface molecules. Flow cytometry analysis revealed that the percentage of double-positive CD11c/MHC II, CD11c/CD86,
CD11c/CD80, CD11c/MHC I, CD11c/CD205, and CD11c/CD40 cells was increased after their treatment with
5-AzaC and lenalidomide. DC, dendritic cells; mDC, mature DC; LN, lenalidomide; 5-AzaC, 5-azacitidine. A: Bar graph depicting the
expression of co-stimulatory molecules on DC (combined results). �Depicts statistically significant difference in comparison to mature DC.
B: Comparison dot-plots for the expression of co-stimulatory molecules by mature dendritic cells treated with solvent (DMSO, 0.1%) and
with the combination of 5-azacitidine (5-AzaC) and lenalidomide (LN). The results of one of three representative experiments are shown.
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11% and 22% for different markers. Results
achieved statistical significance (P< 0.001).

ELISA for IL-12 and IL-15

Dendritic cells were grown in culture, matured
with TNFa, and treated for the last 48 hr with 1.0mM
5-AzaC and/or 0.5mM lenalidomide. Untreated DC
provided the control (Fig. 3). The production of IL-12
and IL-15 was identified in all groups using ELISA.
Administration of 5-AzaC resulted in statistically
significant increase in the production of both IL-12
and IL-15 (P< 0.001 for both). Administration of
lenalidomide alone had no significant effect on the
level of either cytokine. Combined use of 5-AzaC and
lenalidomide resulted in significantly elevated pro-
duction of both cytokines in comparison to mature
DC (P< 0.001) and DC treated with lenalidomide
only. Comparing the combined group to that treated
with 5-AzaC alone, production of IL-15 was signifi-
cantly increased (P< 0.001) in the combined group.
IL-12 production was increased in the combined
group but increase did not reach statistical signifi-
cance (P¼ 0.08).

T-Cell Proliferation Assay

In this experiment, we evaluated the influence of
5-AzaC (concentration 1.0mM) and or lenalidomide
(concentration 0.5mM) on the ability of DC to stimulate
T cells. DC were generated from bone marrow progen-
itors of C57BL/6 mice. Allogeneic T cells, obtained

from the spleens of BALB/c mice, served as responders.
DC were stimulated with TNFa and were exposed to
5-AzaC and/or lenalidomide for the last 48hr of
culture. Plain DC and DC with TNFa alone served as
controls. Both 5-AzaC and lenalidomide induced activa-
tion of DC. Difference in T cell stimulation for the
5-AcaC alone and lenalidomide alone groups was
statistically significant for the DC concentrations 1:27
and 1:81 (P< 0.001) compared to controls. Exposure to
both lenalidomide and 5-AzaC resulted in a statistically
significant difference in T cell stimulation for DC
concentrations of 1:27, 1:81, 1:243, and 1:729 compared
to controls. T cell stimulation for this combined group
was statistically increased compared to the lenalido-
mide alone group at all concentrations and was statisti-
cally increased compared to the 5-AzaC alone group at
concentrations of 1:27 and 1:81 (P¼ 0.024) (Fig. 4).

Gene Arrays

Expression of CTA in normal murine prostate
tissue and RM-1 prostate cancer tumor cells was

Fig. 3. The production of IL-12 and IL-15 by mature DC
(treated with TNFa) after exposure to 5-AzaC (1.0mM) only,
lenalidomide (0.5mM) only, and co-treatment groups for 48 hr.
Supernatant of DC were collected after the treatment and ELISA
was performed to determine the concentration of cytokines.
DC, dendritic cells; TNFa, tumor necrosis factor a; 5-AzaC,
5-azacitidine; Len, Lenalidomide. �Depicts statistically significant
difference in comparison to mature DC.

Fig. 4. 5-AzaC and Lenalidomide increase the ability of mature
DC to stimulate T-cell proliferation in a dose-dependent manner
in a standard MLR. Allogenic T cells obtained from the spleens,
served as responders. DC used as stimulators were generated
from bone marrow progenitors. DC were matured with TNFa
for 48 hr. Mature DC were treated with 5-AzaC (1.0mM) only,
Lenalidomide (0.5mM) only, or combined 5-AzaC/Lenalidomide.
DC were then washed, resuspended in complete medium,
counted using trypan blue, and added to T cells at different ratios
in triplicates. The starting number of live (trypan blue negative)
DC was the same in each group. DC were added in graded doses
(103–105 cells/well) to T cells (3� 105 cells/well) and proliferation
of T cells was measured by uptake of 3H-thymidine. Data
represent the mean� S.E.M. of triplicate measurements from
three independent experiments. Values represent the count per
minute (cpm) in the presence or absence of study compounds.
DC, dendritic cells; mDC, mature DC; 5-AzaC, 5-azacitidine, Len,
Lenalidomide. �Depicts statistically significant difference between
the mDCþ 5-AzaCþ Lenalidomide and mature DC groups.
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compared using gene array data (Table II). As shown,
there was a downregulation in the expression of
multiple CTA genes in prostate cancer cells in com-
parison to normal prostate.

Effect of 5-AzaC on CTA Expression in RM-1
Prostate Cancer Cells

We evaluated the ability of 5-AzaC to induce
increased expression of different CTA in prostate
cancer cells. For this purpose, murine prostate cancer
cells (RM-1 cells) were exposed to two different
concentrations of 5-AzaC for 2 days. The expression

of 13 different CTA and fold change was evaluated by
quantitative PCR. Results are presented in Table III
and Figure 5. 5-AzaC induced increased expression of
nearly all CTA in RM-1 cells after 2 days of incuba-
tion. There appears to be a dose-related response,
with greater expression seen at a concentration of
1mM of 5-AzaC. At this concentration, difference was
statistically significant (P< 0.001) for all 13 CTA
tested.

To make sure that increased CTA gene expression
translated to an increase in expression of the corre-
sponding proteins we performed western blot for 2
randomly selected CTA out of 13 (Cep55 and Cyclin
A1). As demonstrated in Figure 5B, expression of

TABLE II. The Microarray Expression Profile of 35 CTA

Fold change (normal
prostate/RM-1 cells) Common name Probe description on MG 430 2.0 chip

253.375 DKKL1 Dickkopf-like 1
102.026 TULP2 Tubby-like protein 2
45.535 Tex15 Testis expressed gene 15
32.591 Ndn. Necdin
26.833 Akap4 A kinase (PRKA) anchor protein 4
20.997 Acrbp Proacrosin binding protein
15.901 ELOVL4 Elongation of very long chain fatty acids (FEN1/Elo2,

SUR4/Elo3, yeast)-like 4
12.168 ODF4 Outer dense fiber of sperm tails 4
11.5361 CCNA1 Cyclin A1
6.489 Tdrd1 Tudor domain containing 1
5.510 IL13RA2 Interleukin 13 receptor, alpha 2
4.728 Adam2 A disintegrin and metallopeptidase domain 2
3.715 CASC5 Cancer susceptibility candidate 5
3.008 Cage1 Cancer antigen 1
2.69 IGF2BP3 Insulin-like growth factor 2 mRNA binding protein 3
2.532 GPATCH2 G patch domain containing 2
2.531 IGSF11 Immunoglobulin superfamily, member 11
2.48 JARID1B Jumonji, AT rich interactive domain 1B (Rbp2 like)
2.167 Prame Preferentially expressed antigen in melanoma
1.937 LYPD6B LY6/PLAUR domain containing 6B
1.882 Calr3 Calreticulin 3
1.573 Tex14 Testis expressed gene 14
1.55 Trap1a Tumor rejection antigen P1A
1.46 CTAGE5 CTAGE family, member 5
1.425 Ctcf CCCTC-binding factor
1.409 Spa17 Sperm autoantigenic protein 17
1.303 OIP5 Opa interacting protein 5
1.258 Tsga10 Testis specific 10
1.229 Cep55 Centrosomal protein 55
1.146 PLAC1 Placental specific protein 1
1.087 TTK Ttk protein kinase
1.083 Atad2 ATPase family, AAA domain containing 2
1.075 SPAG1 Sperm associated antigen 1
1.06 DPPA2 Developmental pluripotency associated 2
1.04 NUF2 NUF2, NDC80 kinetochore complex component
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CEP55 and Cyclin A1 increased in a dose-dependent
fashion with exposure to 5-AzaC.

We also exposed RM-1 prostate cancer cells to
lenalidomide (at concentrations 0.5, 1.0, 2.0, and
10mM), alone and in combination with 5-AzaC
(at concentrations 0.5 and 1.0mM). Exposure to
lenalidomide did not alter expression of CTA by
prostate cancer cells in either situation in comparison
to controls, which were RM-1 cells for lenalidomide
alone and RM-1 cellsþ 5-AzaC for the combined
group.

DISCUSSION

The difficulty in treating metastatic, especially
hormone-resistant, prostate cancer has long troubled
researchers and clinicians alike. Recent advances in
the understanding of tumor immunology have pro-
vided new direction in the search for novel therapeu-
tic strategies. Immunotherapy holds promise for the
treatment of prostate cancer and other urologic
malignancies and the use of antigen-presenting cells
(APC) has shown some success in the treatment of
prostate cancer. Dendritic cells, as the most effective
APC, play a critical role in induction of innate and
adaptive antitumor immune responses. Due to their
role in generating immune response, DC emerged as
attractive candidates for vaccination protocols in
cancer therapy. Development of DC therapy has been
and remains a multi-step process comprising cell
generation, maturation, antigen loading and delivery,
and failure to optimize any one of these steps could
lead to an ineffective vaccine. Thus, for immunothera-
peutic applications, it appears very important to

identify factors that might affect the differentiation,
maturation and function of DC [10].

In this paper, we examine the effect of epigenetic
modification and immunomodulation on DC and
prostate cancer cells in vitro. 5-AzaC and lenalido-
mide have been used in combination with other
chemotherapeutic agents with variable results in the
treatment of prostate cancer [11–16]. The addition of
lenalidomide to 5-AzaC has been shown to be of
therapeutic benefit in the treatment of certain
hematologic malignancies [17–19]. Despite the disap-
pointing results of the MAINSAIL trial which was
stopped prematurely due to decreased overall sur-
vival with lenalidomide, docetaxel and prednisone
compared to docetaxel and prednisone [20], there
have nevertheless been multiple encouraging studies
showing activity of lenalidomide in prostate
cancer [16,21–23]. Our hypothesis was that combining
the immunomodulatory effects of lenalidomide with
the epigenetic modification of 5-AzaC in the treatment
of prostate cancer might yield better results than the
separate combination of these agents with chemother-
apeutic agents [24], which in most cases act as
immunosuppressants and might actually counteract
the actions of immunostimulatory drugs.

In our experiments, 5-AzaC resulted in a significant
modulation of DC cytokine secretion, namely
IL-12p70 and IL-15. We did not investigate the mecha-
nisms of these changes. Epigenetic regulation of
cytokine genes is a key factor in the initiation of
immune response and, accordingly, 5-AzaC might
influence DC gene expression. 5-AzaC as well as
lenalidomide are compounds with anti-tumor activity.
One of the mechanisms by which these drugs could
enhance anti-cancer immunity may be through

TABLE III. Change in the Expression of CTA in RM-1 Cells After 5-Azacitidine Administration

Fold change expression (qRT-PCR)

Gene description RM-1 RM-1þ 5AzaC 0.5mm RM-1þ 5AzaC 1.0mm

Acrbp 1.00 5.82 7.25
Adam2 1.00 4.47 7.34
Akap4 1.00 5.18 7.13
Boris 1.00 3.16 4.66
Ccna1 1.00 4.29 8.28
Cep55 1.00 6.21 10.75
Dkkl1 1.00 5.48 6.39
Necdin 1.00 3.36 3.89
Odf4 1.00 5.52 9.74
P1a 1.00 3.23 6.21
Spa17 1.00 1.76 2.86
Tex15 1.00 0.76 2.07
Tdrd1 1.00 2.77 3.63
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enhanced dendritic cell function. One possible mode
of action by which our study compounds may be
immunomodulatory is by the induction of DC matu-
ration by the upregulation of key molecules. We
assessed the phenotypic markers of maturation and
there were significant increases in CD86, CD80, CD40,
CD205, MHC Class1, MHC Class II expression in
DC exposed to the combination of 5-AzaC and
lenalidomide (Fig. 2). There was also significant
increase of the DC ability to stimulate T cells in the
mixed leukocyte reaction with addition of 5-AzaC
and lenalidomide to DC culture (Fig. 4). The effect
was dose-dependent and statistically significant.
These results suggest that the combination of 5-AzaC
and lenalidomide might increase proinflammatory

functions of DC, and thus should improve antitumor
activity of DC-based vaccines.

We also examined the effect of 5-AzaC and lenali-
domide on prostate cancer cells. First, we evaluated
the expression of multiple CTA by RM-1 cells. We
have been successful in identifying 35 CTA that are
downregulated in prostate tumor. This was achieved
using an Affymetrix GeneChip Mouse Genome
430 2.0 microarrays to assess differential gene expres-
sion in prostate tumor and normal samples. To
confirm the relative fold change values obtained by
microarray analyses, we performed qRT-PCR assays
for all 35 genes. All genes tested showed similar
expression patterns for both qRT-PCR and microarray
assays.

Fig. 5. RM-1 cells were cultured in complete medium in a humidified atmosphere containing 5% CO2 maintained at 37°C. The day
before treatment, cells were incubated in 6-well plates. After overnight incubation, RM-1 cells were treated for 48 hr with 5-azaC at
concentrations of 0.5 and 1.0mM. Untreated cells provided the control. A: For qRT-PCR analysis, cells were harvested and cDNA
prepared. The expression level of the 13 CTA genes were determined by PCR as indicated in the ``Materials and Methods''. Combined
results from three independent experiments are shown. B: For western blot analyses, cells were harvested at the appropriate time,
washed, and lysed with lysis buffer. The protein concentration in the resulting lysate was determined using a bicinchoninic acid protein
assay kit (Pierce Biotechnology, Rockford, IL). Immunoblotting was conducted by standard protocols with an equal amount of total protein
(10mg) per lane. Antibodies specific for Cyclin A1 and CEP55 were used to detect protein expression. Protein expression of Cyclin A1
and CEP55 was normalized to the expression of GAPDH. �Depicts statistically significant difference in comparison to untreated RM-1 cells.
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Epigenetic events, particularly DNA methylation,
appear to be the primary mechanism regulating CTA
expression. The first evidence that CTA expression
was regulated by DNA methylation was provided by
Weber et al. [3] Promoter methylation is the molecular
mechanism directly responsible for the highly hetero-
geneous intratumor expression of CTA. We speculated
that 5-AzaC would induce increased expression of
downregulated CTA in prostate cancer tissue and
should make cells more accessible to host immune
system. In fact, no major up-regulation of CTA
expression should be expected in tissues expressing
constitutively high levels of CTA because of their
heavily hypomethylated promoter, whereas a strong
up-regulation should be anticipated in tissues
expressing low baseline levels of CTA as the result of
an extensively hypermethylated CTA promoter.

CTA include genes involved in cell cycle regula-
tion, apoptosis, protein synthesis and degradation as
well as transcription factors, and oncogenes [25]. Not
surprisingly, CTA are oftentimes upregulated in can-
cer. For example, CAGE is frequently found to be
hypomethylated in prostate cancer which results in
high expression. Several studies have demonstrated
aberrant expression of AKAP-4 in prostate cancer
making it a potential biomarker candidate. However,
CTA expression is not always upregulated in cancer
cells. Necdin expression, for example, is repressed in
several tumor cell types including melanoma, prostate
and breast cancer cell lines. In our study, it was
interesting to see downregulation of multiple CTA in
our prostate cancer model.

The CTA found to be most downregulated in
prostate cancer cells on gene microarray were used as
markers for further investigation with quantitative
PCR and Western blots. RM-1 cells were exposed to
5-AzaC at concentrations of 0.5 and 1.0mm and qPCR
was performed to compare the expression of various
CTA before and after treatment. Results indicate that
expression of nearly all CTA was increased by expo-
sure of cells to 5-AzaC in a statistically significant
dose-related response. To ensure that this finding
would translate into actual protein expression, West-
ern blots were used to confirm the trend of CTA
upregulation with 5-AzaC exposure. CEP55, one of
the genes investigated, is a known CTA found in
breast, gastric, and bladder cancer [26–28] as well as
in prostate cancer [29]. Western blot results for CEP55
and Cyclin 1A confirmed increased expression after
exposure to 5-AzaC. Addition of lenalidomide alone
or in combination with 5-AzaC does not seem to affect
the expression of CTA by prostate cancer cells.

The current use of agents targeting epigenetic
changes has become a topic of intense interest in
cancer research. In this regard, 5-AzaC represents a

promising epigenetic modulator [25], which has been
studied in the prostate cancer environment. Our
results suggest that 5-AzaC might increase antitumor
immune response through upregulation of CTA and
effect on DC. Lenalidomide is an immunomodulatory
compound with anti-inflammatory, immunomodula-
tory and anticancer activity [16]. Combination of these
agents showed promise in modifying immune re-
sponse which could prove relevant in design of
immune vaccines. Our future goal is to test this
hypothesis in a mouse model in vivo and to work
toward delineating the exact mechanism for the
synergistic effects seen in the combination of these
compounds. If clinical benefit can be proven in solid
organ malignancies, it is possible that this combina-
tion could be added to current adoptive immunother-
apeutic techniques to achieve greater efficacy. Though
in our work lenalidomide did not appear to have
direct effects on prostate cancer cells, it did show
immunomodulatory effects on DC and may contrib-
ute to antitumor response.

There is growing evidence suggesting that the
combination of drugs with different mechanisms of
action might offer a potential benefit especially when
positive effects of compounds are synergistic while
sparing potential side effects and toxicities. Combined
therapy with 5-AzaC and lenalidomide appears to be
a potentially promising option for immunotherapy
for prostate cancer.
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