491,923 research outputs found

    Supersonic axial-force characteristics of a rectangular-box cavity with various length-to-depth ratios in a flat plate

    Get PDF
    A wind-tunnel investigation has been conducted at Mach numbers of 1.50, 2.16, and 2.86 to obtain axial-force data on a metric rectangular-box cavity with various length-to-depth ratios. The model was tested at angles of attack from -4 deg to -2 deg. The results are summarized to show variations in cavity axial-force coefficient for deep- and shallow-cavity configurations with detached and attached cavity flow fields, respectively. The results of the investigation indicate that for a wide range of cavity lengths and depths, good correlations of the cavity axial-force coefficients (based on cavity rear-face area) are obtained when these coefficients are plotted as a function of cavity length-to-depth ratio. Abrupt increases in the cavity axial-force coefficients at an angle of attack of 0 deg. reflect the transition from an open (detached) cavity flow field to a closed (attached) cavity flow field. Cavity length-to-depth ratio is the dominant factor affecting the switching of the cavity flow field from one type to the other. The type of cavity flow field (open or closed) is not dependent on the test angles of attack except near the critical value of length-to-depth ratio

    Two-directional-flow, axial-motion-joint flow liner

    Get PDF
    Flow liner eliminates high-cycle fatigue in ducts carrying cryogenic fluids. It is capable of handling two-directional, high-velocity cryogenic liquid flow with a 3-inch axial motion without binding within a 25-inch length

    Marked Length Spectral determination of analytic chaotic billiards with axial symmetries

    Full text link
    We consider billiards obtained by removing from the plane finitely many strictly convex analytic obstacles satisfying the non-eclipse condition. The restriction of the dynamics to the set of non-escaping orbits is conjugated to a subshift, which provides a natural labeling of periodic orbits. We show that under suitable symmetry and genericity assumptions, the Marked Length Spectrum determines the geometry of the billiard table.Comment: 57 pages, 8 figure

    Forced convection and flow boiling with and without enhancement devices for top-side-heated horizontal channels

    Get PDF
    The effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly was studied. Studies are completed of the variations in the local (axial and circumferential) and mean heat transfer coefficients in horizontal, top-heated coolant channels with smooth walls and internal heat transfer enhancement devices. The working fluid is freon-11. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls; (2) examine the effect of channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel; and (3) develop and improved data reduction analysis. The case of the top-heated, horizontal flow channel with smooth wall (1.37 cm inside diameter, and 122 cm heated length) was completed. The data were reduced using a preliminary analysis based on the heated hydraulic diameter. Preliminary examination of the local heat transfer coefficient variations indicated that there are significant axial and circumferential variations. However, it appears that the circumferential variation is more significant than the axial ones. In some cases, the circumferential variations were as much as a factor of ten. The axial variations rarely exceeded a factor of three

    Small and repetitive axial strain reducing the critical current in BSCCO/Ag superconductors

    Get PDF
    The critical current in two types of axially deformed BSCCO/Ag tape conductors is investigated. An Ic reduction is observed for small axial strains (ranging from 0 to 0.3%) with a characteristic slope dic/d&epsiv;=-5±1 (relative Ic, change per relative change in length). In the case of an axial compression there is a more pronounced Ic reduction. For small axial strains (<0.3%) a certain reversible change in Ic is observed. This reversible behaviour occurs in combination with an irreversible reduction that increases when the number of strain cycles is increased. The reversible part of the Ic change remains for a large number of strain cycles (>10000) and has a similar negative slope for both compressive and tensile strains. It is proposed that the reversible Ic change is correlated to a non-hydrostatic lattice deformation. The Ic versus strain behaviour is in good agreement with an earlier proposed mode

    Influence of laser spot size at diffuser plane on the longitudinal spatial coherence function of optical coherence microscopy system

    Full text link
    Coherence properties and wavelength of light sources are indispensable for optical coherence microscopy/tomography as they greatly influence the signal to noise ratio, axial resolution, and penetration depth of the system. In the present letter, we investigated the longitudinal spatial coherence properties of the pseudo-thermal light source (PTS) as a function of spot size at the diffuser plane, which is controlled by translating microscope objective lens towards or away from the diffuser plane. The axial resolution of PTS is found to be maximum ~ 13 microns for the beam spot size of 3.5 mm at the diffuser plane. The change in the axial resolution of the system as the spot size is increased at the diffuser plane is further confirmed by performing experiments on standard gauge blocks of height difference of 15 microns. Thus, by appropriately choosing the beam spot size at the diffuser plane, any monochromatic laser light source depending on the biological window can be utilized to obtain high axial-resolution with large penetration depth and speckle-free tomographic images of multilayered biological specimens irrespective of the source temporal coherence length. In addition, PTS could be an attractive alternative light source for achieving high axial-resolution without needing chromatic aberration corrected optics and dispersion-compensation mechanism, unlike conventional setups.Comment: 11 pages, 4 figures. arXiv admin note: text overlap with arXiv:1810.0199

    Nonlocal theory of area-varying waves on axisymmetric vortex tubes

    Get PDF
    Area and axial flow variations on rectilinear vortex tubes are considered. The state of the flow is characterized by two dependent variables, a core area, and an azimuthal circulation per unit length, which vary in time and in distance along the length of the tube. Nonlinear integrodifferential equations of motion for these variables are derived by taking certain integrals of the vorticity transport equation. The equations are argued to be valid for moderately short waves (on the order of a few core radii) as well as for long waves. Applications to vortex breakdown and other wave phenomena are considered

    Resonance in Bose-Einstein condensate oscillation from a periodic variation in scattering length

    Full text link
    Using the explicit numerical solution of the axially-symmetric Gross-Pitaevskii equation we study the oscillation of the Bose-Einstein condensate induced by a periodic variation in the atomic scattering length aa. When the frequency of oscillation of aa is an even multiple of the radial or axial trap frequency, respectively, the radial or axial oscillation of the condensate exhibits resonance with novel feature. In this nonlinear problem without damping, at resonance in the steady state the amplitude of oscillation passes through maximum and minimum. Such growth and decay cycle of the amplitude may keep on repeating. Similar behavior is also observed in a rotating Bose-Einstein condensate.Comment: 14 REVTEX4 pages, 18 PS figures, final version Accepted in Journal of Physics

    Determination of the distribution of sound source intensities in subsonic and supersonic jets

    Get PDF
    Equations relating crossed beam space-time correlations to the sound source strength per unit length of an idealized jet are presented and applied to actual measurements in unheated jets at M = 0.71 and M = 1.0. The infrared crossed beam system was assembled and checked out. The prediction of the system's insensitivity to temperature fluctuations when set at 4.31 microns with a 0.08 micron bandpass was checked. Relative intensity profiles of density fluctuations for jets at M = 0.71, 1.0 and 1.94 were measured. These profiles differ considerably from velocity fluctuation profiles measured by other investigators with hotwires. The convection speeds also differ. Finally, the sound source strengths per unit length are obtained at various axial distances for the subsonic and sonic jet. The sonic jet shows peak source strength at an axial distance of six diameters
    corecore