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NOTATION

a speed of sound
D nozzle diameter

T ' mean signal level at detector
I(t) total transmitted signal

I initial radiated signal

i(t) fluctuating component of signal

K(t) absorption coefficient

k(t) fluctuating component of absorption coefficient

L ,L , L components of turbulence scales
yl ?2 ^3

M Mach number

P pressure of gas mixture
p partial pressure of COo in gas mixture
R(£,T) cross-correlation function

RT(TT) moving-frame correlation function

r X - Y, also radial distance
S(Y,t, T) sound source integral

s sound source strength per unit length

T absolute temperature

t time

U(r) axial velocity

U convection velocityc
Up convection velocity of density fluctuations

X position vector of observer outside flow

Y, Z position vectors of sources in flow

yi>yo»y3 coordinate axes connected to Y

£,T),£ variables along y^>y2»y3 axis measured from Y

A Eulerian space variable = Z - Y
^ space variable in moving reference frame
p instantaneous density

po> p mean density

vii



DETERMINATION OF THE DISTRIBUTION OF SOUND SOURCE
INTENSITIES IN SUBSONIC AND SUPERSONIC JETS

Ro J. Damkevala
R. S0 Norman

IIT Research Institute

SUMMARY

Equations relating crossed beam space-time correlations to

the sound source strength per unit length of an idealized jet

are presented and applied to actual measurements in unheated

jets at M = 0.71 and M = 1.0.

The infrared crossed beam system was assembled and checked

out' at the TAJF. The prediction of the system's insensitivity

to temperature fluctuations when set at 4.31 microns with a 0.08

micron bandpass was checked.

Relative intensity profiles of density fluctuations for jets

at M = 0.71, 1.0 and 1.94 were measured. These profiles differ

considerably from velocity fluctuation profiles measured by other

investigators with hot-wires. The convection speeds also differ.

Finally, the sound source strengths per unit length are obtained

at various axial distances for the subsonic and sonic jet. The

sonic jet shows peak source strength at an axial distance of

six diameters.

The description of a preliminary design for an on-line

calibration chamber, which is compatible with the present crossed

beam equipment, is appended to this report.

1. THEORETICAL BACKGROUND

A. Introduction

If a beam of radiation passes through a turbulent fluid which

modulates the beam by an absorption process, the transmitted

signal I(t) can be expressed in terms of the initial unabsorbed

signal I and an. absorption coefficient K(t) by Beer's Law,



= I0 e

The integration is to be performed along the radiation path from
the source to the detector. The signals IQ and I(t) may be ex-
pressed in volts or any other convenient unit of measurement.

It can be shown (ref. 1) that the fluctuating part of the

signal i(t) is related to the fluctuating part k(t) of the absorp-
tion coefficient and the mean signal level at the detector 1,

i(t> = I I Mt^ ; (2)

In the derivation of equation (2) from equation (1) the exponential
is expanded into an infinite series and the higher order terms
neglected. This linearization does not restrict the applicability

of equation (2) to small thermodynamic fluctuations. Only the
radiation wavelength should be selected such that

i(t) « I or / k(t)dT)«l.

This condition is easily satisfied by properly adjusting the length
and initial strength of the radiation beam in most practical

applications.

In the crossed beam arrangement, the transmission paths for

two optical systems are arranged to intersect in the turbulent

region of interest. If one beam is assumed to lie along the Y2

direction and the other along the ¥3 direction, with the direc-
tion of jet flow along the Y-i axis, the cross correlation function

is given by

<VC) ' Vt + T)> CLy/* f S/2RU,T)= £—— -f =/ J <k(y1,y2+71,y3,t)

2̂ ?3 "Ly/2 Lz/2

(3)



where ,

£, "Hi £ variables along y,, y^* and 73 directions

r time delay

B. Turbulence Intensity

When the beams intersect we have £ = 0 and to a good approxima

tion we can write

R(0,0) = k2(Y) L̂  L̂  (4)

where L , L are the turbulence radial scales. The fluctuations
?2 y3

in extinction (absorption) coefficient can be related to the desired

thermodynamic species fluctuations in the jet by selecting a suitable

radiation bandpass and wavelength. The correlation function R(0,0)

is thus a measure of the turbulence intensity for that particular

thermodynamic species being measured, since the radial scales are

relatively constant across a jet cross section (ref. 2). For the

4.31 micron beam setting, the extinction coefficient is related di-

rectly to the partial pressure or density of C02 in the fluid, and

R(0, 0) a<(p - pQ)
2 (Y)> (5)

where Y. is the position vector of the beam intersection point.

We shall term VR(0, 0) as the relative intensity of density

fluctuations since it is proportional to y<^ (p - po) >

C. Convection Speeds

The cross correlation function in crossed beam measurements

was defined by equation (3). The transmission paths of two

mutually perpendicular beams intersect at the point Y(y,, yo, y3)

in the jet. The variables along the beams t|, £ are measured from

the point of intersection. If the vertical beam is now moved

downstream a distance £•,, the correlation function R(£i, T) will

exhibit a maximum at a time T, corresponding to the convection

time of the signal-producing fluctuations in the flow. For small £,



this time can be used to predict the convection speed: U = f-i/r-i.
- - - , - ' • C - 1 X . J .
This is illustrated in Figure 1 where a series of cross correlation

functions are plotted for varying distances £.. The envelope of the

curves represents the moving axis autocorrelation function R,(TT).Li Li
The time delays and spacings representing the points of tangency

between the moving-axis and Eulerian (fixed-beam) correlation

functions can be plotted to obtain the convection speed. This form

of measurement and plotting is commonly referred to as. space-time
correlation measurements.

If the extinction coefficient is related directly to the

partial pressure or density of C02 in the fluid, these measurements

will give the convection speed of density fluctuations rather than
the more familiar velocity convection speed.

D. The Sound Source Integral

Following Lighthill's approach, the far field density fluctua-

tions are related to the effective quadruple strength T.. in a
turbulent flow by the relation

where (x _

Tl " '

X - Y
— — (6)

ao

The autocorrelation of far field density fluctuations is then

given by the relation

(p(X,t+r*)-p

(x.-y.) (x.-y.) (xk-zk)

3
A - I



where

• •
r is an arbitrary time delay, introduced only to obtain the auto-

correlation function. Equation (8) is to be evaluated at the

retarded time r given by

* A •••• (X - Y)
T = r + - - . (9)

T is thus a function of A and is, consequently a dependent variable

and should be treated as such. The coordinate system is shown in

Figure 2. The position of the observer is given by the vector X,

while Y and Z locate the sources in the flow.

In a turbulent flow, the radiating quadrupoles are not at

rest and move during the retarded time T. This motion is correctly

accounted for in equation (7) since the correlation tensor R. ••̂ ,,

measured in the frame of the observer includes the convection effects.

If we consider the time derivative of such a correlation, we find

there are two contributors, the true time change and the change due

to convection of space derivatives. In most turbulent flows, it is

the latter which dominates, i.e., apparent changes with time are

due to the instantaneous convection of space derivatives. Even

though these space derivatives may be very large they do not contri-
I

bute to the integral of equation (7) . This can be proven by express-

ing volume integrals of divergence terms as area integrals which

must vanish for large A if •
lim Rijk/Y,A,r) = 0.
A — 9 o o . . .

Thus, in order to present equation (7) in a form useful for

noise prediction we must write it such that pure time effects are

maximized. This can be done by introducing a moving frame of

reference in which time scales are maximized. This of course is

the frame of reference moving at the convection speed of the

covariance. It must be stressed that this only minimizes the effects

of convection of derivatives. They can be zero only in a frame which

moves instantaneously with the fluid.



We define a moving axis correlation term by

X>A,r) (10)

Since an eddy at Y is convected downstream a distance a Mr by the

time, the sound emitted at Y travels toward the observer (see Figure 2)

A '• (X - Y)
a distance — - , the correct variable in a frame moving

1x - Y|
at the convection Mach number is given by

c

A = A - aQ M T (11)

Combining equations (9) and (11) gives us the relationship

in , terms of ^

X • (X-Y) + ao T* JX-YJ
T =

ao /X-Y -M • (X-Y)\

= T(X) (12)

It has been shown in ref. 3 that the time derivatives in the

fixed and moving frames are related by

- Rijk, (X,A,T) = [ -£-_ - - a K -*-] Pi1k/(Y,X,T> (13)
1JK^ ° n J A

O -D /v A _\ _ r |_ r

r-M-r

where r = X - Y , r = JX - Y|

and the subscript n denotes a component normal to M.

The space derivative — P. -u/fCx) will contribute nothing
n

to the integral of equation (7). Differentiating three more times,

equation (13) becomes



the sign 4 signifies that both sides of the equation are equiva-

lent when integrated as in equation .(7). That is, both sides of

equation (14) produce the same far field effect although they are

not strictly equal. Equation (7) in a moving axis frame is then

given by

<(p(X,t)-Po) • (p(X,t+T*)>

P^t. d>L dX (15)

It is the inner integral which will concern us since it contains

all the local source characteristics. We will call this integral

S(Y,t,r ) = - Pi1k/Y,71,T)d2i (16)

E. Supplemental Background
for Crossed Beam Subsonic Data Analysis "

1. Jet <Noise Analysis. -

Low speed case - M—*o

The quadrupole strength T^. in equation (6) is. given by
J

the expression

Tij = P ui uj + (p " ao P )6ij

if we neglect viscosity.

Ribner (ref.4) considers the pressure field as composed

of an ambient p , an incompressible part p° and a compressible

part p with corresponding densities related by p = aQ p. It

is this compressible p that contributes to the pressure

fluctuations in the far field.



If a large -shear gradient is present in the flow, the

turbulence will tend to be most intense in that, region. From

the momentum equation, we get \ f f^u. ^u.\
Ox ' v I _ / 1 1 I
jf (p U. U ) j pLi + ̂ l

. J K *yj
If y is in the dominant direction

Su,

will, be much larger than

2
—. and we can write

du^ / ULli
-S (p u. u ) 4 P --i
at J / dy2

(18)

pu.u.
du

1 (19)

The crossed beam correlation function and the sound source

correlation are:

RE <X» A» r) = < P (Y, t) • p (Y + A, t + T) >

(I, A, T) = < T,, (Y,

Hence:

4 |dul

(Y + A, t + T) >

<RE> - ao -7^ (RE> (20)

The first term contributes to shear noise while the second term,

due to homogeneous turbulence, is called the self noise term. The

sound source integral

(Y, t, (I, \, T) d\

CI,A, T) dA

(16)

8



/

2
—7 R

L(X,A,r)dA

*and : Sself(Y,t,T) = -ao -4RL(X>A,T)dA

where the integrals have to be evaluated at T = T = 0

so that T ̂  (X) , and R, is measured in a moving frame ofLI
reference. Finally, the sound source strength for unit length

at position Y_ is given by

' s a4 "4self ~ o

8shear = *o os 0 R (T) (22)2 L

This implies the directionality of the shear noise term,

•which is predominant at small 9, i.e., close to the jet axis,

becoming small in directions normal to the jet axis. Equation

(22) is strictly valid only for small 9 since we have assumed a

dominant direction for velocity in the direction y, .

2. Noise Spectrum.-

Referring back to equation (12), at low speeds:

*
T = T

1-M cosg
where 9 is the angle between the flow and a line joining the

observer to the source. The time scale or frequency is thus

multiplied by the factor « • . This is a result ofv 3 1-M cos.g
the motion of the sources relative to the observer, and tends

to increase the apparent frequencies in the downstream direction,



The energy spectrum can be obtained by Fourier transformation,

as

(23)

(24)

In each of these expressions, f, is the frequency in the moving

reference frame. For a fixed observer, the frequencies are

doppler shifted according to

1-M. cos 9c

where M is the convection Mach number. The total noise spectrum
C

is given by Eflelf (f) + Eshear (f) .

Fourier transforming of the partial derivatives of moving

axis crossed beam correlations R, (T, ) is best done by fitting a

function of the type

B,r + B0T
2 + BQT

3 + .......
RL(r) = e

 l 2 3 (25)

to the envelopes. The second and fourth derivatives of such an

expression can be obtained analytically and Fourier transformed

by means of a standard computer routine. Thus a spectrum in the

moving domain will be obtained which can be transformed to the

fixed frame of reference by the multiplying factor on frequency.

2. PRACTICAL CONSIDERATIONS

A. Selection of Spectroscopic Settings

Based on a literature search and experimentation, the spectro-

scopic settings for measurements in natural air jets were narrowed

down to the 4.3 micron fundamental absorption band of C02« Further

experiments were conducted in -a calibration cell (ref. 5) to pin-

point the relationship between the absorption coefficient K( ) and

the three thermodynamic variables p, P and T.'

10



In general, it is known that if the absorption is weak

("weak line" absorption) all rotational lines are uniformly absorbed

and KWL is proportional to p, the partial pressure of C02 in the

gas mixture. In the "strong line" region the change of gas pressure

P has two effects. First, as with the weak line region, the absorber

pressure p varies directly as the gas pressure P and the variations

of P are directly related to the partial pressure variations.

Secondly, the line width, and therefore the total effective absorp-

tion strength, varies with some power of the gas pressure P. The

strong line assumption is generally valid at lower pressures where

line width is sensitive to changes in pressure. The weak line assump-

tion is generally valid where total absorption is small, regardless

of pressure.

Actual measurements in a test cell at IITRI have shown that for

the 4.3 micron fundamental absorption band of carbon dioxide, the

weak line assumption is valid for low concentrations (§ <( • 1 percent)

of COo at atmospheric pressure and above. Crossed beam measurements

taken using atmospheric air will give results dominated by CCU

concentration fluctuations. Since the mean C02 concentration is

constant throughout the flow and its surroundings in this case,

the measurements are dominated by density fluctuations. It was also
r\Kfound that ?£ was very small at wavelengths of 4.21 and 4.31 microns

when a bandwidth of 0.08 micron was used. Narrower bandpasses would

tend to enhance temperature effects. The present measurements were

made with both beams set at 4.31 and 0.08 micron bandpass. Some

measurements were also made at 4.20 and 4.35 microns at the same

bandpass for future comparison purposes.

B. Temperature Effects

The cold air jet was operated continuously and intermittantly

to obtain a variation in jet stagnation temperature. During conti-

nuous operation, the stagnation temperature was maintained at 487°R.

Intermittant operation allowed stagnation temperature to remain close

to the ambient air temperature -- about 515°R -- although some drop

occurred during the course of the run.

11



Figure 3 shows the results, of these measurements which were

made at various radial locations in the Mach 0.71 jet at an axial

distance of two diameters from the nozzle. The stagnation and

static temperatures in the jet are noted for each symbol used in

the figure. It- is observed that no correlation is evident between

the measured value and the jet temperature. The scatter in measure-

ments is larger than any temperature effects. Thus is appears that

the chosen radiation wavelength and bandpass suppresses temperature

fluctuations to a satisfactory degree.

The temperature variation examined in this manner is however

too small to generalize the results to all conditions. Complete

elimination or reversal of the static temperature gradient across

the jet would require a heated jet. During present measurements

the average density changes due to temperature changes were so

small as to be undetectable. This will not be the case in heated

jets.

i C. Effect of Beam Misalignment

During the earliest stages of crossed beam measurements, it

became evident that precise alignment between the source and

detector side of each beam was essential to keep the scatter of

results within reasonable limits. Beam focusing, as expected, was

not found to be as critical. The crossed beam instrument of MSFC

was exposed to the elements during the course of measurements

and even with the building doors shut the temperature in the build

Ing was not controllable. Alignment of the horizontal beam was

found to be dependent on the surrounding temperature and hence fre-

quent alignment checks were necessitated. Secondly, the detector

housings appeared to jar easily, affecting the spot position on

the photodetector element. If the radiation beam is not properly

positioned with respect to the photodetector element, which is only

1 mm in diameter, spurious signals will be detected due to

Schlieren effect.

12



As an illustration of the result of beam misalignment,

Figure 4 shows the measured cross correlations at X/D = 4 for

the Mach 1 jet. The scatter in measured values was dramatically

reduced when the horizontal beam was realigned as shown by the .

black circles. The results shown in Figure 4 include measurements

in all four quadrants of the jet cross section. Especially signi-

ficant is the fact that the peak of the profile was not at all

evident when the horizontal beam was misaligned. The re-alignment

of the vertical beam would have required disassembly of the mirror

housings. Fortunately it was found that the vertical beam held

its alignment to a satisfactory degree.

3. TURBULENCE MEASUREMENTS

Measurements were made on an unheated air jet at MSFC.

Table I lists various conditions for which turbulence intensity

measurements were made. Intensity traverses are more detailed

for the 315 m/sec jet and the supersonic jet with the convergent-

divergent nozzle. Table II lists the space-time correlation

measurements made on the same jet. At most axial locations, the

space-time correlation runs were made where the turbulence intensity

was maximum. The total number of runs was very large - 213 runs in

the first series of August 1971 and 234 runs in the second series

of December 1971. All runs were recorded on magnetic tape.

A. Relative Intensity Profiles

The intensity traverse for the subsonic jet at 235 m/sec

(M = 0.71) is shown in Figure 3 when temperature effects were dis-

cussed. The ordinate is the square root of the cross correlation

measured with intersecting beams, which is directly proportional

to the root mean square density turbulence intensity.

Figure 5 shows the measured intensity profiles for the Mach 1

jet at various axial distances for the nozzle. The main feature

of this diagram is the location.of the peak intensity at each

cross section. The laminar core extends to about five diameters.

13



with the intensity peaks closer to the jet centerline than in case

of velocity fluctuations. Also, unlike velocity turbulence profiles,

the turbulent density profile shows large turbulent intensities

even in the core. This is presumably due. to the fact that the jet

core density is higher than the ambient density outside the jet

and hence the fluctuations are relatively larger.

Figure 6 shows normalized relative intensity profiles plotted

against the nondimensional radial distance r\ = ^ >^. for the

315 m/sec jet velocity. As a comparison, the "universal" relative

intensity profile for velocity fluctuations in a jet is also shown.

The reason for the inward shift of the peak in case of density

fluctuation profiles may be explained as follows.

If we consider density changes (p-p~) in the flow direction to be

isotropically related to. pressure changes (p-p) by (p-pO = (p-p)/a

where a is the local speed of sound, then the one- dimensional

linearized momentum equation can be written as

a2(r) [p(r) p(r)]' = p(r) U(r) u1 (r)

where primes refer to root mean square values .

Since the local mean density will vary inversely as the local tempera-

ture T(r), across the jet, it can be shown from equation (19) that

the root mean square density fluctuations are related to the local

mean and fluctuating velocity by the proportionality

[p(r> - p(r)]' aT-(r)
U(o) U(o)

It is evident from this that the root mean square density

profile will be weighted toward the jet centerline and the weighting

will be stronger if the jet centerline temperatures are lower than

ambient as is the case for unheated jets.

A set of intensity profiles for the correctly expanded super-

sonic jet at 485 m/sec (M = 1.94) is shown in Figure 7. The root

mean square density profiles are plotted on the same scale as

14



Figure 5. Significantly, the "core" now extends to at least ten

nozzle diameters. The intensities are higher for the sonic jet.

Figure 8 is a plot of normalized root mean square density fluctua-

tions across the supersonic jet, 'again plotted against the non-

dimensional radial parameter TJ. Thus the spreading rate for the

supersonic jet is far slower than the sonic jet. All profiles

collapse very well, showing a peak near T] = -.025, except that for

y-i/D = 2. The reason for this is the extremely narrow extent of

the mixing region at y-i/D = 2. Since the profiles are normalized

to the measured maximum value, if the true peak of the profile lies

in-between the points of measurement, the normalized profile

would be in error. In this case, if the intensity at •q = 0 is

adjusted to be 0.7, all other points on the profile will be lowered

by 30 percent and fall right on the profiles-for other y-i/D values.

In case of y-i/D = 12, a secondary peak in the profile appears at

r\ = +.025. This is most likely due to a weak shock that might be

present in the jet at that location.

The intensity profiles at y-i/D = 2 for the underexpanded

and correctly expanded supersonic jet are shown in Figure 9. This

profile is plotted against the radial coordinate normalized with

respect to the jet diameter. Both jets were obtained at the same
2

stagnation pressure of 72.2 N/cm (90 psig). The underexpanded

jet used the converging 20 mm diam nozzle. Also shown for com-

parison is the profile for the sonic velocity jet. The under-

expanded jet profile needs further study to determine the cause

of the multiple peaks and the higher overall turbulence levels. '

It should be noted that the flow Mach number is higher than 1.94

and the pressure above atmospheric inside the intercepting shock.

B. Space-time Correlations

A summary of space-time correlation measurements is given in

Table II. It is the envelope of the space-time correlation

functions that is used for the estimation of sound source properties

The space-time correlations also give the convection speed of turbu-

lence in the flow. The measured convection speeds for each set of
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curves are also included in Table II. Since measurement of convec-

tion speeds was not the primary purpose of the August and December

1971 series, effort was not made to obtain complete convection

speed profiles across each jet cross section.

Space-time correlations were measured on-line and also obtained

from digital analysis of the recorded data.. Results for the 235 m/sec

jet are shown in Figures 10 through 18. In each figure the on-line

measurements are shown on top. The horizontal scale (time lag) is

different for digitally analyzed plots; however, comparisons can

easily be made. Results for the 315 m/sec jet are shown in

Figures 19 through 25. Results not included in Figures 10 through

25 are those for which digital analysis could not be performed.

Figure 26 shows the variation of convection speeds with axial

distance from the nozzle. .In case of hot-wire measurements, the

convection speed ratio U /U(o)c^0.6 at r/D = 0.5 and U /U(o):̂ 0.7c. c*
at r/D = 0 for small axial distances. In contrast, the density

turbulence convection speeds Up are in general higher, about 0.7 U(o)

at r/D = 0.54. In case of the subsonic jet, at small y^/D, Up/U(o)

is between 0.6 and 0.5. It shows a sudden jump to 0.77 at y-i/D = 3.5

and again drops slowly with axial distance. A similar but smaller

jump appears in case of the sonic jet at y^/D = 6.0. These axial

distances are near the ends of the laminar cores for the respective

jets and indicate a weighting toward local jet velocities U(r).

C. Jet Noise

1. Results.- Only relative results could be obtained from the pres-

ent generation of crossed beam instrument. The results are in

electrical units, i.e., in terms of the output of the photodetector.

The conversion factor is more fully discussed in the appendix where

the preliminary requirements for a calibration cell are described.

Care in alignment is of primary importance and a larger number of

data points would have been valuable. The extra care needed in

alignment slowed down the data acquisition. The scatter in abso-

lute values of results is such that considerable time had to be

spent in the subsequent analysis phase. As a result of the
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experiences on the test program, several modifications were made

to the crossed beam system to give greater precision and speed in

aligning the equipment. These modifications included the instal-

lation of mechanical counters on the positioning screws to pro-

vide absolute references, a general tightening up of backlash and

clearances, and the reconstruction of the phbtodetector housings.

2. Sound Source Distribution.- For the unheated subsonic jet at

M=0.71, the low speed formulations derived in Section 1-E are ap-

plicable since the actual convection Mach numbers will be of the

order of 0.5, and compressibility effects small.

Envelopes of the space-time correlation functions were ^

drawn and the exponential function p _ 0
 Bl \r\ + B2M + B3 >T'KL- e

was fitted to each envelope by means of a nonlinear least squares

computer routine. One might recall that the correlations are

expected to be symmetrical about the T = 0 axis. This is

achieved by taking the modulus of the time lag T rather than by

omitting odd powers of the exponent. This resulted in a better

fit of the function using fewer terms in the exponent. However,

a discontinuity will be present at T=0 which is probably not pres-

ent in the actual data, and the values of the derivatives at that

point are somewhat in question. Another new feature of this rou-

tine was to fit the slopes of the functions by the method of least

squares rather than fit the function itself. This resulted in

more consistent higher order derivative data.

The predicted derivatives reflect the quality of the

measured data. In those cases where measurements were detailed,

i.e., closer and more numerous beam spacings A were used and

consequently the function R, was well defined near T = 0, the

results were consistent from run to run at a given axial location.

Figure 27 shows the data (triangles) and the fitted polynomial

with the second (circles) and fourth (crosses) derivatives at

?1 r
-g— = 3.5 and radial distances in the jet ̂  = 0.36 and 0.54.

Both these measurements are in the intense region of the shear

layer and predict consistent source strengths (see Table II).
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yl r
A similar set of runs at -— = 2 and - = 0.317 gave a completely

different shape of the fourth derivative profile (see Figure 28)

At this axial location, the shear layer is very thin and the

gradients are more intense. Hence measurements are needed at

smaller radial intervals and axial beam: separations. Data at

larger axial locations where the jet dimensions are larger

tend to be more consistent in general. Figures 29 and 30

show the fitted functions and their derivatives at yl - /- n
~T) ~and 10.0. In each figure, the derivatives have the same

general trends at £ = 0. This is as one would expect in the

fully developed region beyond yl = 5. The second derivative
v D vis negative at y~L = 6 and positive (though small) , at yl = 10
~ D~

IT
for =r =0.54. This may be due to these locations having

.2 2̂
opposite d ul terms. At yl = fi

 d ul will be positive

~~ D " '~
at ̂  = 0.54 while at yl =10, it will be negative. The

D
velocity gradients are not expected to influence the crossed

beam measurements directly, but this needs to be checked.

Table III summarizes the results for the M = 0.71 case. -

The sound source strength per unit jet length has been computed

by taking into account the electronic gains, shear layer cross-

sectional areas and estimated velocity gradients. These are

shown in columns 5 and 6 of the table. The shear term is zero

for those radial locations where dU/dy2 = 0. Finally, column

7 of the table gives the ratio of shear noise to self noise at

each axial distance in the mixing region. Except for the value

at yl = 6.0, the ratios are consistent and agree rather well

with other investigators. Chu (ref. 6) showed that this ratio

was 1.7 when he used a Gaussian function to fit his data. Other

investigators (refs.7 and 8) have shown that this ratio will

be close to 1.0 if the moving frame autocorrelation function is

approximated by e~ ^T' , assuming complete separability of the

four-dimensional space- time correlation function. Using a

simplified model of isotropic turbulence superposed on a mean
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flow and a joint Gaussian probability density for U (Y) and
. ^ ™~

U (Y + A), Ribner obtains the following relation:
2̂  **̂  «•

Shear noise t_r. cos Q -f cos 9 (28)
Self noise z

i.e.,
Shear noijse ,
Self noisei —

ylThis condition is closely approximated in our case at =r = 10 and

our value of 0.667 for 0=0 appears to be good.

For the M = 1.0 case, both self and shear noise terms

peak at yl = 6. The source strength variation appears to be
D~

relatively "smooth" for this jet and is shown in Figure 31.

3. Far Field Noise Spectrum.- The Fourier transform of the deriva-

tive functions will give the spectra. The discontinuity at T = 0

will not in general be crucial to the results except for very high

frequencies. Correction should be applied to the frequencies

to account for the doppler shift at small 9. Using an average

convection Mach number M =0.5, the frequencies will not be

shifted at 9 = y, and they will be doubled at 9=0. Ribner's

analysis (ref. 7) and Churs measurements using a hot wire

anemometer (ref.6) indicate that the self noise will have a

dominant frequency about 2 to 2.5 times that of shear noise.

Our results, using completely different techniques, tend to

confirm this. Figure 32 shows the spectra at yl/D = 6.0 and

r/D= 0.54. The overall spectrum is obtained by adding the shear

and self noise spectra after the shear spectrum has been

corrected for thef 1 ] term (equation 22). Spectra for yl/D=10
\~5r7

are shown in Figure 33. Table IV summarizes the dominant

frequencies contributed by sources at various axial and radial

locations. It should be remembered that these frequencies are

for the predicted far field noise, although they were obtained

from measurements in the jet stream. To check our pre-

dictions with known noise spectra, we need actual measurements

with this jet. Some noise measurements have been reported in
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the literature and may be used as a comparison after correcting

for dimensions, jet speed, etc. The noise spectrum for the

whole jet can be considered as being made up of spectra from

different slices of the jet. In the mixing region, the spec.trum

of noise from a slice of jet will have approximately the

same peak as that from a unit volume at the region of

maximum shear beacuse the chief noise-emitting eddies are

confined in a small volume at this region. Dyer (ref. 9)

has suggested that the peak frequency of the overall noise

spectrum is generated by a slice located at about 5 diameters

from the nozzle. The dominant frequency varies with jet
0 58

velocity according to. (u.) * (ref. 10). According to

Lee (ref. 11), our 25 mm (1 inch) jet at M = 0.71 (800 fps)

should have a dominant frequency of 4350 Hz. Correcting our

spectra from the zero degree angle, the frequencies will be

increased by a factor of 2.0. We get approximately 4400 Hz

at yl/D =6.0 which is very close to the prediction.

The dominant frequency varies with axial distance because

the jet is growing and slowing down. At 1̂/D = 10 the

dominant frequency was measured as 2 x 1300 = 2600 Hz, which

shows an inverse variation with axial distance.

Measurements at 1̂/D less than 6.0, for the jet mixing

region failed to show a spectrum-with a dominant frequency.

The shear noise spectra will dominate in this region and hence

more detailed measurements in the shear layer are needed before

any conclusions can be drawn.

One field measurement with a microphone at 30 deg from

the jet axis showed that the spectrum of the overall jet noise

peaked in the 3.15 kHz 1/3 octave band, which would place the

chief noise producing region of this jet somewhere between

6.0 and 10.0 diameters from the muzzle.
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4. CONCLUSIONS AND RECOMMENDATIONS

A start has been made toward the use of the crossed

beam correlation technique for studying jet noise character-

istics. In many respects, the technique produced results

that agree well with the results of other researchers.

The experiment pointed out the importance of detailed

prior information of the structure of turbulence before

meaningful source estimates can be made. It appears that

the density (or pressure) fluctuations within the jet have

quite a different structure from the usual velocity tur-

bulence as measured by a hot-wire anenometer.

For future work, it would be advantageous to first

make detailed measurements on a larger, 4 inch diameter jet,

with and without heating. Measurements in the mixing region

will have to be especially detailed. The present measurements

on the 1 inch jet are deficient in this area.

A calibration cell should be built at the earliest

opportunity and a technique for its routine use established.

Absolute thermodynamic state measurements should be possible

after this, which are essential for studying extrapolation

and scaling effects.
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A Moving Frame Autocorrelation
Function (measured)

• 2nd derivative

D 4th derivative
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Figure 27' Moving Frame Autocorrelation And Its

Derivatives^!. = 3.5 M =0'. 71 Jet
D
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1.6*-

A Moving Frame Autocorrelation
Function (measured)

• 2nd derivative
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Figure 30b Moving Frame Autocorrelation And Its

Derivatives ̂ 1. = 10.0 M = 0.71 Jet
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APPENDIX '

CALIBRATION CELL FOR CROSSED BEAM INSTRUMENT

1. BACKGROUND

The cross-correlation technique is useful for the estimation

of fluctuating components, mean or static properties are not

measured directly by the crossed beam instrument. However, the

static properties of the gas do. influence the fluctuating absorp-

tion coefficient because the absorption derivatives with respect

to pressure (4=) and temperature (4=) are functions of the mean

gas pressure (P) , temperature (T) and concentration of the absorb-

ing species (f) in the gas mixture (Ref . Al) Specifically,

- - - - _
, T, f ' P, T, f

Adiabatic condition gives

*S - 111 *f*£ -y p

where 7 is the gas constant. Thus we may rewrite, Eq. (1)

where the partial derivatives are evaluated at the mean levels

P, T and f .

Equation (A3) shows that if. known pressure fluctuations can

be introduced in a gas, absorption coefficient fluctuations can
r

be calculated if the derivatives - and £™ are known at the mean

thermodyna mic condition of the gas.

The output of the crossed beam correlator which we shall

call the cross-correlation function G(x,y,z) , is proportional to

the mean squared absorption fluctuations within a small correla-

tion volume around the intersection point of the two beams of

.radiation. If we use superscripts (1) and (2) to identify the

two beams ,
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G(x,y,z,r) = i (t) i(2) (Mr) (volts)2 (A4)

where i' (t) , i^ (t+r) are the a.c. components of the signals

at each of the detectors at time t and t+r respectively. i(t)

is in turn related to the intensity of radiation at the photo-

detector 61 after modulation by the absorbing species in the

gas. 61 is related to 6K by

6K= "IT .- (A3)

where g, is the length of correlation volume through which the

beam traverses and I is mean radiation intensity on the photo-

"detector. Hence we can write;

- a2

and

G<x,y,z,0) . a2 . I I (A6)

6K' ' = 6K.' ' at the intersection point, a is a calibration

factor for the photodetector and its electronics in volts per

watt of radiation intensity.

A second calibration factor is now introduced because of

the relationship between 6K and 6P (or 6p) given by Eq . (A3) , the

constant of proportionality being the terms in the square bracket:

- - , - - -
P, T, T di / T, P, f 7 F

Unfortunately p is not a well defined constant, but an

unknown function of P, T, f an.d the radiation wavelength and

bandpass being employed. Analytical prediction of p is extremely

complex and impractical. Band models are used to simplify the

task somewhat, but this requires assumptions about the content

of the data in the form of .position and intensity distributions

of the included spectral lines.
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The most elusive unknowns in all the equations presented
so far are the dimensions of the correlation volume, &^ ' , ̂  ' ,
along the beams. This is the volume over which turbulence
'eddy' is coherent and hence contributes significantly to the
correlation function. Since density and pressure are scalar
quantities, the fluctuations have no direction like velocity
fluctuations and hence the concept of the eddy itself is in
question. It is these fundamental difficulties along with the
complicated nature of (3 in relating the measured quantities to
actual turbulent processes that prompts the construction of a
calibration cell.

2. CELL REQUIREMENTS

The basic requirement of the cell is to produce pressure
(or density) fluctuations of known magnitude. The absorption
fluctuations resulting from these pressure fluctuations can be
measured by the crossed beam instrument and compared with the
relationships given in Eqs. (A3), (A6) and (A7) to yield the un-
known constants a, P, and &^ '3 Jt, . It should be noted that
the last three 'constants' are functions of the mean thermo-
dynamic state of the gas and hence a relationship should be
established between possible thermodynamic states that will be
encountered and these constants.

A judicious choice of radiation wavelength and bandpass
can be made beforehand to reduce the amount of experimentation.
We shall restrict ourselves here to the 4.3p. fundamental absorp-
tion band of CC^ • By choosing a broad bandpass of O.OSp. the
influence of the rotational structure is suppressed while the
total energy available is maximized. At the same time, by not
using the entire bandwidth of this absorption band, we may be
able to minimize or maximize the effects of various thermodynamic
states as desired.
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Let us consider the use of the cell for calibrating the
Crossed Beam Instrument for air jet measurements.

Table Al

Gas Pressure
Gas Temperature
C(>2 Concentration
Pressure Fluctuation Levels

Min.

atmos .
atmos.
.03
80

Max.

3 atmos.
800°F
.06
160

(427°C)

percent
dB re •

by volume
00002 N/m2

The possible range of gas conditions is given in Table Al. The
•pressure fluctuation levels are chosen to provide practical levels
measurable with good precision by means of available condenser
microphones. One of the shortcomings of previous calibration cell
experiments (Ref.A2) was that pressure fluctuations inside the
cell were measured by means of a Kistler piezoelectric pressure
gauge which introduced excessive noise levels into the measured
signals. Secondly, the cell was designed for single optical beam
passage only and hence the correlation volume could not be measured.
Thirdly, the acoustical characteristics of the measurement chamber
were not suited for frequencies above 50 Hz. Fourthly, the cell
had its own optical system which -could not be used in conjunction
with the crossed beam instrument. The present design intends to
overcome all these shortcomings.

- 3. EXCITATION PRINCIPLE

The pressure fluctuations will be generated in the calibration
cell by means of a loudspeaker. For simplicity and ease of analysis,
the discrete frequency acoustic waves should be plane and stationary.
This can be achieved in a long tube with a reflecting end, with the
speaker coupled at the opposite end by means of a flexible hose.
The basic arrangement is shown in Fig.Al. A standing wave pattern
is generated inside the tube, fixed at the plane end of the tube.
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It can be shown that, neglecting losses at the tube wall, the rms

amplitude of the pressure 6P-, is given by (Ref.Al).

6P1 = [(Â Bp2 cos2 (kjx + |) + (Â )2 sin2 (kjX + |)]1/2

(A8)

where A, = amplitude of the incident wave

Bj = amplitude of the reflected wave

0 = phase angle by which the reflected pressure
leads or lags the incident pressure wave.
") f

k, = — — = wave number
1 C

c = speed of sound in the medium.

x = distance from reflecting surface . • :

In practice, it is not possible to measure A, , B, and 9

individually, but if 6P, can be measured at three locations near

the reflecting surface, the values will be known for all condi-

tions. In fact, this method can also be used for the measurement

of normal specific acoustic impedence of a specimen fixed on the

reflecting end (Ref . A4).. For the present application, the pres-

sure amplitude distribution will be measured by means of a probe

microphone inserted through a small hole in the reflecting surface,

and compared with the pressure distribution measured with the

crossed beam instrument.

According to Beranek (Ref . A4), to assure plane waves, the

inside diameter of a cylindrical tube should not exceed the value

given by

(A9)
h

where f, is the highest frequency at which measurements are to

be made. Because of the requirement for the crossed beam to pass

undistorted through the tube, a square tube of inside dimensions

3 cm x 3 cm is recommended. Such a tube would be useful to at

least 5 kHz at room temperature. The length of the tube should
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be not less than half the wavelength of the lowest frequency at

which measurements- are to be made. A 170 cm length will there-

fore be adequate down to 100 Hz. The operating frequencies will

have to be chosen from this 100 Hz to 5 kHz range, and will prob-

ably be selected from the resonant frequencies in the tube.

4. DRIVER

Assuming an average efficiency of a loudspeaker to be

20 percent, we can compute the electrical power rating of the

speaker for exciting the acoustic field in the tube to the maximum

pressure levels of 160 dB. Actually the efficiency is expected

to be greater at the resonant frequencies in the cell.

6P,
160 dB = 20 login - - —

iu 2x10-5

6Pl = 2x10"
 5 x 108 = 2xl03 N/m2 rms

Intensity = I =

/ o

.964 x 10 watt/in

Hence acoustic power required = I(cross-sectional area of tube)

= .964xl04 x 9xlO"4 =8.7 watts

Assuming efficiency = .20,

Electrical power =43.5 watts

. Hence a speaker rated at 50 watts continuous would be adequate.

A possible candidate would be University Ling-Altec Model ID-50

acoustic horn driver.

69



5. PROBE MICROPHONE

The probe tube should be made of small diameter for two

reasons. First, the tube area should be small compared to the

cell-cross section to minimize its influence on the standing

wave pattern. Secondly, a small internal diameter will damp

out strong resonances likely to occur inside the probe tube.

A stainless steel tubing with internal and external diameters

of 0.241 and 0.316 cm, respectively, and a length of 50 cm

would be suitable. One end of the tube should be connected

to a small cavity about 2 cc in volume, in front of a 1/2 inch

condenser microphone enclosed in an aluminum housing. The tube

should be connected by means of a short sleeve of flexible tubing

to prevent transmission of vibrational components from the wall

of the probe to the microphone. This flexible tubing as well as

the microphone diaphragm should be able to withstand the highest

gas temperature that will be used in the cell. Figure 2 shows

one possible arrangement for coupling the probe tube to a con-

denser microphone. The probe tube can be calibrated by alter-

nately placing the probe and a 1/8 inch microphone in an anechoic

sound field at various frequencies.

6. WINDOWS

Circular (or square) windows of 2.5 cm principal dimension

should be provided at a distance of 10 cm from the reflecting

end. Irtran or sapphire (AjÛ ) windows about 2 mm thick, can

be used. The windows should be optically flat and mounted

parallel to avoid disturbing the crossed beam instrument align-

ments. The window mounting design will need special attention

to allow for the thermal expansion due to heating the cell.

It might become advantageous to make the window assembly with a

double wall with water circulation for cooling as it would also

lower the thermal emission of the windows into the crossed beam

system. This item may need further research before the design

is finalized.
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7. CELL TEMPERATURE CONTROL

It is desirable to maintain a uniform temperature throughout

the gas enclosed in the cell. Even small changes in temperature

would produce changes in the standing wave pattern which would

be detected by the sensitive crossed beam instrument. A change

in temperature by 1°R at 500°R results in a change in sound

wavelength of 6 mm. Hence the first nodal point after reflection
would move a distance of 3 mm. Temperature control might prove
to be the most critical feature of the calibration cell at short

wavelengths and lower temperatures. A constant temperature liquid

bath can be provided around the cell to regulate the cell tempera-
ture in the low temperature range. See for example, Beranek

(Ref. A4 .& AS).

To achieve the higher temperatures necessary for calibration

prior to heated jet studies, thermostatically controlled electrical
heating tapes can be wrapped around the metal tube. The spacing

and width of the tape can be controlled to achieve uniformity

of temperature inside the tube. Also, sections of the tape can
be supplied with varying currents to achieve uniformity of tempera-
ture. Unless the temperature is maintained uniform throughout

the tube, thermal equilibrium will not be achieved, and accurate
measurements will be impossible. • The degree of uniformity necessary

will have to be determined experimentally; the maximum appears to

be about 1°F per cm.

Thermocouples should be embedded in the sides of the tube

at several locations to monitor the temperature. In addition,
a temperature probe can be used to check the gas temperatures on

the axis of the tube.
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8. MECHANICAL

Provision should be made to allow precise positioning of the

probe microphone with respect to the calibration cell. The long

square tube should be positioned so that the crossed infrared beams

pass through the windows. For this reason a sturdy stand will be

necessary, with provision for fine adjustment of height.

The speaker should be enclosed in a housing by itself and

connected to the resonance tube by means of a flexible tube and

a conical coupler. A transition region will be required between

the square tube and the round loudspeaker tube. The tube itself

should be made of 6 mm thick stainless steel with inner dimen-
sions of 3 x 3 x 170 cm. Suitable ports for filling and venting

the test chamber should be provided.

The window region may be fabricated separately with a double

wall for circulating water for cooling. The entire cell may
require some form of constant temperature bath if temperature

gradients prove to be a problem.

9. ESTIMATION OF SCALES

In scalar fields the scales are related to the spectrum of

fluctuations. Hence if the sound field in the cell has the same

spectrum as the turbulence to be measured by the crossed beam,

a measure of the length scales will be obtained. Difficulties

are immediately apparent, because the tube acts as a resonator

and it would be impossible to produce a sound spectrum of the

desired shape in it. Hence we will have to be content with
measuring the apparent scales at discrete frequencies and infer

the actual turbulent scales from a spectrum analysis of the

turbulence. Fortunately the correlation volume is weighted by
the size of the radiation beams at the intersection point and

hence this frequency effect may not be pronounced.
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10. INFRARED SPECTROSCOPY

It is our purpose to evaluate the function p given by

Eq.A7). As mentioned previously, p is a complicated function

of mean properties of the gas P, T and f through the partial
NTT

derivatives - and -=. Some results of earlier experiments are

available to us for guidance. These are summarized below. In
> •

all cases, a spectroscopic bandwidth of .08|j. is assumed.

At 4.20p., 6K is a function of 6P only for pressures from

422 to 1053 mm Hg (5.63 x 10 to 14.05 x 10 N/m2) and tempera-

tures from 243 to 393°K at a given C02 concentration f . The f

dependence is given by a power low relationship with an exponent

0.76. At 4.35p,, 6K is independent of P but strongly dependent

on both T and f. Since f is known from the measurement at 4.20u.,

the measurement at 4.35p. will yield temperature. The temperature

dependence can also be represented by a power law with an exponent
*><• i 5— JL . -I .

-\v
The value of remains constant for all T at 4.30p, but

drops slightly with increasing f. For normal atmospheric C09
~ST7 7 ^

concentration f = .03%, f£ = -5 x 10"' for 500 S PS WOO mm Hg.,
~±v oJ- .7 N N i

while at f = .121%, -11 x 10 7. The unit of K is mm L.

The pressure derivative is positive for all combinations

of the parameters. At 4.30|j., 297°K and .03%, concentration,
= 6.0 x 10"7. .

11. CONCLUDING REMARKS

A conceptual design for a calibration cell for crossed beam

infrared measurements has been presented. It is hoped that the

cell will answer many of the questions relating to the applica-

tion of the crossed beam correlation technique for jet noise

prediction.
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