527 research outputs found

    VITAL-ECG : a de-bias algorithm embedded in a gender-immune device

    Get PDF
    2Artificial intelligence, sensors technology and sensors networks influence people behavior in everyday life. The diffusion of mobile devices, based on Internet of Things (IoT) paradigms, has created specific solutions for applications, in which physical objects are connected to Internet system. Wearable IoT (WIoT) represents a new IoT area, concerning detection, processing and communication capabilities in the field of healthcare. Vital-ECG is a smart device, related to health monitoring, which complies with gender equality. The wearable device takes the form of a smartwatch, which monitors heart activity and the most important vital parameters: blood oxygen saturation, skin temperature and fatigue level. Electrocardiogram and plethysmogram signals are acquired from Vital-ECG, which is able to track the blood pressure values, through a deep learning implementation. The neural algorithm has been implemented avoiding the "Gender Bias". The gender balance in machine learning, especially in biomedical application, is a crucial point to prevent algorithms from making a distorted prediction, disadvantaging women.partially_openopenPaviglianiti, A; Pasero, EPaviglianiti, A; Pasero,

    A Study Of The Efficacy Of Machine Learning For Diagnosing Obstructive Coronary Artery Disease In Non-Diabetic Patients

    Get PDF
    According to the Centers for Disease Control and Prevention, about 18.2 million adults age 20 and older have Coronary Artery Disease in the United States. Early diagnosis is therefore of crucial importance to help prevent debilitating consequences, and principally death for many patients. In this study we use data containing gene expression values from peripheral blood samples in 198 non-diabetic patients, with the goal of developing an age and sex gene expression model for diagnosis of Coronary Artery Disease. We employ machine learning methods to obtain a classification based on genetic information, age and sex. Our implementation uses feed forward neural networks, support vector machines and random forest classification. The neural network outperforms not only the other two but also an early Ridge Regression algorithm that used age, sex, and 23 genes clustered in a set of six metagenes. Our analysis provides valuable insight into the increasing effectiveness of machine learning applied to CAD diagnosis

    Representation learning for uncertainty-aware clinical decision support

    Get PDF
    Over the last decade, there has been an increasing trend towards digitalization in healthcare, where a growing amount of patient data is collected and stored electronically. These recorded data are known as electronic health records. They are the basis for state-of-the-art research on clinical decision support so that better patient care can be delivered with the help of advanced analytical techniques like machine learning. Among various technical fields in machine learning, representation learning is about learning good representations from raw data to extract useful information for downstream prediction tasks. Deep learning, a crucial class of methods in representation learning, has achieved great success in many fields such as computer vision and natural language processing. These technical breakthroughs would presumably further advance the research and development of data analytics in healthcare. This thesis addresses clinically relevant research questions by developing algorithms based on state-of-the-art representation learning techniques. When a patient visits the hospital, a physician will suggest a treatment in a deterministic manner. Meanwhile, uncertainty comes into play when the past statistics of treatment decisions from various physicians are analyzed, as they would possibly suggest different treatments, depending on their training and experiences. The uncertainty in clinical decision-making processes is the focus of this thesis. The models developed for supporting these processes will therefore have a probabilistic nature. More specifically, the predictions are predictive distributions in regression tasks and probability distributions over, e.g., different treatment decisions, in classification tasks. The first part of the thesis is concerned with prescriptive analytics to provide treatment recommendations. Apart from patient information and treatment decisions, the outcome after the respective treatment is included in learning treatment suggestions. The problem setting is known as learning individualized treatment rules and is formulated as a contextual bandit problem. A general framework for learning individualized treatment rules using data from observational studies is presented based on state-of-the-art representation learning techniques. From various offline evaluation methods, it is shown that the treatment policy in our proposed framework can demonstrate better performance than both physicians and competitive baselines. Subsequently, the uncertainty-aware regression models in diagnostic and predictive analytics are studied. Uncertainty-aware deep kernel learning models are proposed, which allow the estimation of the predictive uncertainty by a pipeline of neural networks and a sparse Gaussian process. By considering the input data structure, respective models are developed for diagnostic medical image data and sequential electronic health records. Various pre-training methods from representation learning are adapted to investigate their impacts on the proposed models. Through extensive experiments, it is shown that the proposed models delivered better performance than common architectures in most cases. More importantly, uncertainty-awareness of the proposed models is illustrated by systematically expressing higher confidence in more accurate predictions and less confidence in less accurate ones. The last part of the thesis is about missing data imputation in descriptive analytics, which provides essential evidence for subsequent decision-making processes. Rather than traditional mean and median imputation, a more advanced solution based on generative adversarial networks is proposed. The presented method takes the categorical nature of patient features into consideration, which enables the stabilization of the adversarial training. It is shown that the proposed method can better improve the predictive accuracy compared to traditional imputation baselines

    Learning Difference Equations with Structured Grammatical Evolution for Postprandial Glycaemia Prediction

    Full text link
    People with diabetes must carefully monitor their blood glucose levels, especially after eating. Blood glucose regulation requires a proper combination of food intake and insulin boluses. Glucose prediction is vital to avoid dangerous post-meal complications in treating individuals with diabetes. Although traditional methods, such as artificial neural networks, have shown high accuracy rates, sometimes they are not suitable for developing personalised treatments by physicians due to their lack of interpretability. In this study, we propose a novel glucose prediction method emphasising interpretability: Interpretable Sparse Identification by Grammatical Evolution. Combined with a previous clustering stage, our approach provides finite difference equations to predict postprandial glucose levels up to two hours after meals. We divide the dataset into four-hour segments and perform clustering based on blood glucose values for the twohour window before the meal. Prediction models are trained for each cluster for the two-hour windows after meals, allowing predictions in 15-minute steps, yielding up to eight predictions at different time horizons. Prediction safety was evaluated based on Parkes Error Grid regions. Our technique produces safe predictions through explainable expressions, avoiding zones D (0.2% average) and E (0%) and reducing predictions on zone C (6.2%). In addition, our proposal has slightly better accuracy than other techniques, including sparse identification of non-linear dynamics and artificial neural networks. The results demonstrate that our proposal provides interpretable solutions without sacrificing prediction accuracy, offering a promising approach to glucose prediction in diabetes management that balances accuracy, interpretability, and computational efficiency

    Intelligent Biosignal Analysis Methods

    Get PDF
    This book describes recent efforts in improving intelligent systems for automatic biosignal analysis. It focuses on machine learning and deep learning methods used for classification of different organism states and disorders based on biomedical signals such as EEG, ECG, HRV, and others

    Predictive Modelling Approach to Data-Driven Computational Preventive Medicine

    Get PDF
    This thesis contributes novel predictive modelling approaches to data-driven computational preventive medicine and offers an alternative framework to statistical analysis in preventive medicine research. In the early parts of this research, this thesis presents research by proposing a synergy of machine learning methods for detecting patterns and developing inexpensive predictive models from healthcare data to classify the potential occurrence of adverse health events. In particular, the data-driven methodology is founded upon a heuristic-systematic assessment of several machine-learning methods, data preprocessing techniques, models’ training estimation and optimisation, and performance evaluation, yielding a novel computational data-driven framework, Octopus. Midway through this research, this thesis advances research in preventive medicine and data mining by proposing several new extensions in data preparation and preprocessing. It offers new recommendations for data quality assessment checks, a novel multimethod imputation (MMI) process for missing data mitigation, a novel imbalanced resampling approach, and minority pattern reconstruction (MPR) led by information theory. This thesis also extends the area of model performance evaluation with a novel classification performance ranking metric called XDistance. In particular, the experimental results show that building predictive models with the methods guided by our new framework (Octopus) yields domain experts' approval of the new reliable models’ performance. Also, performing the data quality checks and applying the MMI process led healthcare practitioners to outweigh predictive reliability over interpretability. The application of MPR and its hybrid resampling strategies led to better performances in line with experts' success criteria than the traditional imbalanced data resampling techniques. Finally, the use of the XDistance performance ranking metric was found to be more effective in ranking several classifiers' performances while offering an indication of class bias, unlike existing performance metrics The overall contributions of this thesis can be summarised as follow. First, several data mining techniques were thoroughly assessed to formulate the new Octopus framework to produce new reliable classifiers. In addition, we offer a further understanding of the impact of newly engineered features, the physical activity index (PAI) and biological effective dose (BED). Second, the newly developed methods within the new framework. Finally, the newly accepted developed predictive models help detect adverse health events, namely, visceral fat-associated diseases and advanced breast cancer radiotherapy toxicity side effects. These contributions could be used to guide future theories, experiments and healthcare interventions in preventive medicine and data mining
    • …
    corecore