118,862 research outputs found

    Mechanism Design without Money via Stable Matching

    Full text link
    Mechanism design without money has a rich history in social choice literature. Due to the strong impossibility theorem by Gibbard and Satterthwaite, exploring domains in which there exist dominant strategy mechanisms is one of the central questions in the field. We propose a general framework, called the generalized packing problem (\gpp), to study the mechanism design questions without payment. The \gpp\ possesses a rich structure and comprises a number of well-studied models as special cases, including, e.g., matroid, matching, knapsack, independent set, and the generalized assignment problem. We adopt the agenda of approximate mechanism design where the objective is to design a truthful (or strategyproof) mechanism without money that can be implemented in polynomial time and yields a good approximation to the socially optimal solution. We study several special cases of \gpp, and give constant approximation mechanisms for matroid, matching, knapsack, and the generalized assignment problem. Our result for generalized assignment problem solves an open problem proposed in \cite{DG10}. Our main technical contribution is in exploitation of the approaches from stable matching, which is a fundamental solution concept in the context of matching marketplaces, in application to mechanism design. Stable matching, while conceptually simple, provides a set of powerful tools to manage and analyze self-interested behaviors of participating agents. Our mechanism uses a stable matching algorithm as a critical component and adopts other approaches like random sampling and online mechanisms. Our work also enriches the stable matching theory with a new knapsack constrained matching model

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    A Dual Characterization of Incentive Efficiency

    Get PDF
    We show that incentive e cient allocations in economies with adverse se- lection and moral hazard can be determined as optimal solutions to a linear programming problem and we use duality theory to obtain a complete charac- terization of the optima. Our dual analysis identi es welfare e ects associated with the incentives of the agents to truthfully reveal their private information. Because these welfare e ects may generate non-convexities, incentive e cient allocations may involve randomization. Other properties of incentive e cient allocations are also derived

    Making recommendations bandwidth aware

    Full text link
    This paper asks how much we can gain in terms of bandwidth and user satisfaction, if recommender systems became bandwidth aware and took into account not only the user preferences, but also the fact that they may need to serve these users under bandwidth constraints, as is the case over wireless networks. We formulate this as a new problem in the context of index coding: we relax the index coding requirements to capture scenarios where each client has preferences associated with messages. The client is satisfied to receive any message she does not already have, with a satisfaction proportional to her preference for that message. We consistently find, over a number of scenarios we sample, that although the optimization problems are in general NP-hard, significant bandwidth savings are possible even when restricted to polynomial time algorithms

    Efficiency of Truthful and Symmetric Mechanisms in One-sided Matching

    Full text link
    We study the efficiency (in terms of social welfare) of truthful and symmetric mechanisms in one-sided matching problems with {\em dichotomous preferences} and {\em normalized von Neumann-Morgenstern preferences}. We are particularly interested in the well-known {\em Random Serial Dictatorship} mechanism. For dichotomous preferences, we first show that truthful, symmetric and optimal mechanisms exist if intractable mechanisms are allowed. We then provide a connection to online bipartite matching. Using this connection, it is possible to design truthful, symmetric and tractable mechanisms that extract 0.69 of the maximum social welfare, which works under assumption that agents are not adversarial. Without this assumption, we show that Random Serial Dictatorship always returns an assignment in which the expected social welfare is at least a third of the maximum social welfare. For normalized von Neumann-Morgenstern preferences, we show that Random Serial Dictatorship always returns an assignment in which the expected social welfare is at least \frac{1}{e}\frac{\nu(\opt)^2}{n}, where \nu(\opt) is the maximum social welfare and nn is the number of both agents and items. On the hardness side, we show that no truthful mechanism can achieve a social welfare better than \frac{\nu(\opt)^2}{n}.Comment: 13 pages, 1 figur

    Identification with Latent Choice Sets

    Full text link
    In a common experimental format, individuals are randomly assigned to either a treatment group with access to a program or a control group without access. In such experiments, analyzing the average effects of the treatment of program access may be hindered by the problem that some control individuals do not comply with their assigned status and receive program access from outside the experiment. Available tools to account for such a problem typically require the researcher to observe the receipt of program access for every individual. However, in many experiments, this is not the case as data is not collected on where any individual received access. In this paper, I develop a framework to show how data on only each individual's treatment assignment status, program participation decision and outcome can be exploited to learn about the average effects of program access. I propose a nonparametric selection model with latent choice sets to relate where access was received to the treatment assignment status, participation decision and outcome, and a linear programming procedure to compute the identified set for parameters evaluating the average effects of program access in this model. I illustrate the framework by analyzing the average effects of Head Start preschool access using the Head Start Impact Study. I find that the provision of Head Start access induces parents to enroll their child into Head Start and also positively impacts test scores, and that these effects heterogeneously depend on the availability of access to an alternative preschool.Comment: 23 pages, plus 32 pages of supplemental appendi
    • …
    corecore