20 research outputs found

    Average-Case Complexity of Shellsort

    Full text link
    We prove a general lower bound on the average-case complexity of Shellsort: the average number of data-movements (and comparisons) made by a pp-pass Shellsort for any incremental sequence is \Omega (pn^{1 + 1/p) for all plognp \leq \log n. Using similar arguments, we analyze the average-case complexity of several other sorting algorithms.Comment: 11 pages. Submitted to ICALP'9

    The Average-Case Area of Heilbronn-Type Triangles

    Get PDF
    From among (n3) {n \choose 3} triangles with vertices chosen from nn points in the unit square, let TT be the one with the smallest area, and let AA be the area of TT. Heilbronn's triangle problem asks for the maximum value assumed by AA over all choices of nn points. We consider the average-case: If the nn points are chosen independently and at random (with a uniform distribution), then there exist positive constants cc and CC such that c/n3<μn<C/n3c/n^3 < \mu_n < C/n^3 for all large enough values of nn, where μn\mu_n is the expectation of AA. Moreover, c/n3<A<C/n3c/n^3 < A < C/n^3, with probability close to one. Our proof uses the incompressibility method based on Kolmogorov complexity; it actually determines the area of the smallest triangle for an arrangement in ``general position.''Comment: 13 pages, LaTeX, 1 figure,Popular treatment in D. Mackenzie, On a roll, {\em New Scientist}, November 6, 1999, 44--4

    Spin-the-bottle Sort and Annealing Sort: Oblivious Sorting via Round-robin Random Comparisons

    Full text link
    We study sorting algorithms based on randomized round-robin comparisons. Specifically, we study Spin-the-bottle sort, where comparisons are unrestricted, and Annealing sort, where comparisons are restricted to a distance bounded by a \emph{temperature} parameter. Both algorithms are simple, randomized, data-oblivious sorting algorithms, which are useful in privacy-preserving computations, but, as we show, Annealing sort is much more efficient. We show that there is an input permutation that causes Spin-the-bottle sort to require Ω(n2logn)\Omega(n^2\log n) expected time in order to succeed, and that in O(n2logn)O(n^2\log n) time this algorithm succeeds with high probability for any input. We also show there is an implementation of Annealing sort that runs in O(nlogn)O(n\log n) time and succeeds with very high probability.Comment: Full version of a paper appearing in ANALCO 2011, in conjunction with SODA 201

    The average-case area of Heilbronn-type triangles

    Get PDF
    corecore