6,839 research outputs found

    Bounded Delay Scheduling with Packet Dependencies

    Full text link
    A common situation occurring when dealing with multimedia traffic is having large data frames fragmented into smaller IP packets, and having these packets sent independently through the network. For real-time multimedia traffic, dropping even few packets of a frame may render the entire frame useless. Such traffic is usually modeled as having {\em inter-packet dependencies}. We study the problem of scheduling traffic with such dependencies, where each packet has a deadline by which it should arrive at its destination. Such deadlines are common for real-time multimedia applications, and are derived from stringent delay constraints posed by the application. The figure of merit in such environments is maximizing the system's {\em goodput}, namely, the number of frames successfully delivered. We study online algorithms for the problem of maximizing goodput of delay-bounded traffic with inter-packet dependencies, and use competitive analysis to evaluate their performance. We present competitive algorithms for the problem, as well as matching lower bounds that are tight up to a constant factor. We further present the results of a simulation study which further validates our algorithmic approach and shows that insights arising from our analysis are indeed manifested in practice

    Scheduling for Optimal Rate Allocation in Ad Hoc Networks With Heterogeneous Delay Constraints

    Full text link
    This paper studies the problem of scheduling in single-hop wireless networks with real-time traffic, where every packet arrival has an associated deadline and a minimum fraction of packets must be transmitted before the end of the deadline. Using optimization and stochastic network theory we propose a framework to model the quality of service (QoS) requirements under delay constraints. The model allows for fairly general arrival models with heterogeneous constraints. The framework results in an optimal scheduling algorithm which fairly allocates data rates to all flows while meeting long-term delay demands. We also prove that under a simplified scenario our solution translates into a greedy strategy that makes optimal decisions with low complexity

    Adaptive Network Coding for Scheduling Real-time Traffic with Hard Deadlines

    Full text link
    We study adaptive network coding (NC) for scheduling real-time traffic over a single-hop wireless network. To meet the hard deadlines of real-time traffic, it is critical to strike a balance between maximizing the throughput and minimizing the risk that the entire block of coded packets may not be decodable by the deadline. Thus motivated, we explore adaptive NC, where the block size is adapted based on the remaining time to the deadline, by casting this sequential block size adaptation problem as a finite-horizon Markov decision process. One interesting finding is that the optimal block size and its corresponding action space monotonically decrease as the deadline approaches, and the optimal block size is bounded by the "greedy" block size. These unique structures make it possible to narrow down the search space of dynamic programming, building on which we develop a monotonicity-based backward induction algorithm (MBIA) that can solve for the optimal block size in polynomial time. Since channel erasure probabilities would be time-varying in a mobile network, we further develop a joint real-time scheduling and channel learning scheme with adaptive NC that can adapt to channel dynamics. We also generalize the analysis to multiple flows with hard deadlines and long-term delivery ratio constraints, devise a low-complexity online scheduling algorithm integrated with the MBIA, and then establish its asymptotical throughput-optimality. In addition to analysis and simulation results, we perform high fidelity wireless emulation tests with real radio transmissions to demonstrate the feasibility of the MBIA in finding the optimal block size in real time.Comment: 11 pages, 13 figure

    Downlink Video Streaming for Users Non-Equidistant from Base Station

    Get PDF
    We consider multiuser video transmission for users that are non-equidistantly positioned from base station. We propose a greedy algorithm for video streaming in a wireless system with capacity achieving channel coding, that implements the cross-layer principle by partially separating the physical and the application layer. In such a system the parameters at the physical layer are dependent on the packet length and the conditions in the wireless channel and the parameters at the application layer are dependent on the reduction of the expected distortion assuming no packet errors in the system. We also address the fairness in the multiuser video system with non-equidistantly positioned users. Our fairness algorithm is based on modified opportunistic round robin scheduling. We evaluate the performance of the proposed algorithms by simulating the transmission of H.264/AVC video signals in a TDMA wireless system

    Achieving Optimal Throughput and Near-Optimal Asymptotic Delay Performance in Multi-Channel Wireless Networks with Low Complexity: A Practical Greedy Scheduling Policy

    Full text link
    In this paper, we focus on the scheduling problem in multi-channel wireless networks, e.g., the downlink of a single cell in fourth generation (4G) OFDM-based cellular networks. Our goal is to design practical scheduling policies that can achieve provably good performance in terms of both throughput and delay, at a low complexity. While a class of O(n2.5logn)O(n^{2.5} \log n)-complexity hybrid scheduling policies are recently developed to guarantee both rate-function delay optimality (in the many-channel many-user asymptotic regime) and throughput optimality (in the general non-asymptotic setting), their practical complexity is typically high. To address this issue, we develop a simple greedy policy called Delay-based Server-Side-Greedy (D-SSG) with a \lower complexity 2n2+2n2n^2+2n, and rigorously prove that D-SSG not only achieves throughput optimality, but also guarantees near-optimal asymptotic delay performance. Specifically, we show that the rate-function attained by D-SSG for any delay-violation threshold bb, is no smaller than the maximum achievable rate-function by any scheduling policy for threshold b1b-1. Thus, we are able to achieve a reduction in complexity (from O(n2.5logn)O(n^{2.5} \log n) of the hybrid policies to 2n2+2n2n^2 + 2n) with a minimal drop in the delay performance. More importantly, in practice, D-SSG generally has a substantially lower complexity than the hybrid policies that typically have a large constant factor hidden in the O()O(\cdot) notation. Finally, we conduct numerical simulations to validate our theoretical results in various scenarios. The simulation results show that D-SSG not only guarantees a near-optimal rate-function, but also empirically is virtually indistinguishable from delay-optimal policies.Comment: Accepted for publication by the IEEE/ACM Transactions on Networking, February 2014. A preliminary version of this work was presented at IEEE INFOCOM 2013, Turin, Italy, April 201
    corecore