32,789 research outputs found

    Gaze Embeddings for Zero-Shot Image Classification

    Get PDF
    Zero-shot image classification using auxiliary information, such as attributes describing discriminative object properties, requires time-consuming annotation by domain experts. We instead propose a method that relies on human gaze as auxiliary information, exploiting that even non-expert users have a natural ability to judge class membership. We present a data collection paradigm that involves a discrimination task to increase the information content obtained from gaze data. Our method extracts discriminative descriptors from the data and learns a compatibility function between image and gaze using three novel gaze embeddings: Gaze Histograms (GH), Gaze Features with Grid (GFG) and Gaze Features with Sequence (GFS). We introduce two new gaze-annotated datasets for fine-grained image classification and show that human gaze data is indeed class discriminative, provides a competitive alternative to expert-annotated attributes, and outperforms other baselines for zero-shot image classification

    One-Shot Fine-Grained Instance Retrieval

    Full text link
    Fine-Grained Visual Categorization (FGVC) has achieved significant progress recently. However, the number of fine-grained species could be huge and dynamically increasing in real scenarios, making it difficult to recognize unseen objects under the current FGVC framework. This raises an open issue to perform large-scale fine-grained identification without a complete training set. Aiming to conquer this issue, we propose a retrieval task named One-Shot Fine-Grained Instance Retrieval (OSFGIR). "One-Shot" denotes the ability of identifying unseen objects through a fine-grained retrieval task assisted with an incomplete auxiliary training set. This paper first presents the detailed description to OSFGIR task and our collected OSFGIR-378K dataset. Next, we propose the Convolutional and Normalization Networks (CN-Nets) learned on the auxiliary dataset to generate a concise and discriminative representation. Finally, we present a coarse-to-fine retrieval framework consisting of three components, i.e., coarse retrieval, fine-grained retrieval, and query expansion, respectively. The framework progressively retrieves images with similar semantics, and performs fine-grained identification. Experiments show our OSFGIR framework achieves significantly better accuracy and efficiency than existing FGVC and image retrieval methods, thus could be a better solution for large-scale fine-grained object identification.Comment: Accepted by MM2017, 9 pages, 7 figure

    MILD-Net: Minimal Information Loss Dilated Network for Gland Instance Segmentation in Colon Histology Images

    Get PDF
    The analysis of glandular morphology within colon histopathology images is an important step in determining the grade of colon cancer. Despite the importance of this task, manual segmentation is laborious, time-consuming and can suffer from subjectivity among pathologists. The rise of computational pathology has led to the development of automated methods for gland segmentation that aim to overcome the challenges of manual segmentation. However, this task is non-trivial due to the large variability in glandular appearance and the difficulty in differentiating between certain glandular and non-glandular histological structures. Furthermore, a measure of uncertainty is essential for diagnostic decision making. To address these challenges, we propose a fully convolutional neural network that counters the loss of information caused by max-pooling by re-introducing the original image at multiple points within the network. We also use atrous spatial pyramid pooling with varying dilation rates for preserving the resolution and multi-level aggregation. To incorporate uncertainty, we introduce random transformations during test time for an enhanced segmentation result that simultaneously generates an uncertainty map, highlighting areas of ambiguity. We show that this map can be used to define a metric for disregarding predictions with high uncertainty. The proposed network achieves state-of-the-art performance on the GlaS challenge dataset and on a second independent colorectal adenocarcinoma dataset. In addition, we perform gland instance segmentation on whole-slide images from two further datasets to highlight the generalisability of our method. As an extension, we introduce MILD-Net+ for simultaneous gland and lumen segmentation, to increase the diagnostic power of the network.Comment: Initial version published at Medical Imaging with Deep Learning (MIDL) 201

    RADNET: Radiologist Level Accuracy using Deep Learning for HEMORRHAGE detection in CT Scans

    Full text link
    We describe a deep learning approach for automated brain hemorrhage detection from computed tomography (CT) scans. Our model emulates the procedure followed by radiologists to analyse a 3D CT scan in real-world. Similar to radiologists, the model sifts through 2D cross-sectional slices while paying close attention to potential hemorrhagic regions. Further, the model utilizes 3D context from neighboring slices to improve predictions at each slice and subsequently, aggregates the slice-level predictions to provide diagnosis at CT level. We refer to our proposed approach as Recurrent Attention DenseNet (RADnet) as it employs original DenseNet architecture along with adding the components of attention for slice level predictions and recurrent neural network layer for incorporating 3D context. The real-world performance of RADnet has been benchmarked against independent analysis performed by three senior radiologists for 77 brain CTs. RADnet demonstrates 81.82% hemorrhage prediction accuracy at CT level that is comparable to radiologists. Further, RADnet achieves higher recall than two of the three radiologists, which is remarkable.Comment: Accepted at IEEE Symposium on Biomedical Imaging (ISBI) 2018 as conference pape

    Task Decomposition and Synchronization for Semantic Biomedical Image Segmentation

    Full text link
    Semantic segmentation is essentially important to biomedical image analysis. Many recent works mainly focus on integrating the Fully Convolutional Network (FCN) architecture with sophisticated convolution implementation and deep supervision. In this paper, we propose to decompose the single segmentation task into three subsequent sub-tasks, including (1) pixel-wise image segmentation, (2) prediction of the class labels of the objects within the image, and (3) classification of the scene the image belonging to. While these three sub-tasks are trained to optimize their individual loss functions of different perceptual levels, we propose to let them interact by the task-task context ensemble. Moreover, we propose a novel sync-regularization to penalize the deviation between the outputs of the pixel-wise segmentation and the class prediction tasks. These effective regularizations help FCN utilize context information comprehensively and attain accurate semantic segmentation, even though the number of the images for training may be limited in many biomedical applications. We have successfully applied our framework to three diverse 2D/3D medical image datasets, including Robotic Scene Segmentation Challenge 18 (ROBOT18), Brain Tumor Segmentation Challenge 18 (BRATS18), and Retinal Fundus Glaucoma Challenge (REFUGE18). We have achieved top-tier performance in all three challenges.Comment: IEEE Transactions on Medical Imagin
    • …
    corecore