5 research outputs found

    ANALYSIS OF INFORMATION INTERACTION SECURITY WITHIN GROUP OF UNMANNED AERIAL VEHICLES

    Get PDF
    Subject of Research. The paper presents analysis of information interaction of the elements within the group of unmanned aerial vehicles and their vulnerability to destructive information impact. At the moment, this problem is relevant for devices used in civil areas. In addition, the task of identifying hidden destructive information impact is an unsolved problem within the group of unmanned aerial vehicles. Method. A set-theoretical model of information interaction within the group of unmanned aerial vehicles is developed based on comparative evaluation results of the group control strategies. The developed model is analyzed, that gives the possibility to identify and evaluate the vulnerable elements, which carry out information interaction and are subjected to destructive information impact. Experiments are carried out, where destructive information is introduced into the process of information interaction (both internal and external), leading to disruption of the agent or group as a whole. Main Results. The information interaction of unmanned aerial vehicles group requires security factor increasing for contraction of the destructive information impact and a hidden destructive information impact. Hidden destructive information impact cannot be detected by classical approaches to information security, therefore, it is necessary to develop new methods to increase the information interaction security from such attacks. Practical Relevance. The results of the set-theoretical model analysis of information interaction within unmanned aerial vehicles group will enable the development of new information security methods to eliminate specific vulnerabilities associated not only with the classical, but also with the "soft" impact methods. They will be in demand for the use in autonomous robotic systems

    Toward Computational Modeling of C2 for Teams of Autonomous Systems and People (19th ICCRTS)

    Get PDF
    19th ICCRTS, Toward Computational Modeling of C2 for Teams of Autonomous Systems and People, Autonomy Track – Paper 116The technological capabilities of autonomous systems (AS) continue to accelerate. Although AS are replacing people in many skilled mission domains and demanding environmental circumstances, people and machines have complementary capabilities, and integrated performance by AS and people working together can be superior to that of either AS or people working alone. We refer to this increasingly important phenomenon as Teams of Autonomous Systems and People (TASP), and we identify a plethora of open, command and control (C2) research, policy and decision making questions. Computational modeling and simulation offer unmatched yet largely unexplored potential to address C2 questions along these lines. The central problem is, this kind of C2 organization modeling and simulation capability has yet to be developed and demonstrated in the TASP domain. This is where our ongoing research project begins to make an important contribution. In this article, we motivate and introduce such TASP research, and we provide an overview of the computational environment used to model and simulate TASP C2 organizations and phenomena. We follow in turn with an approach to characterizing a matrix of diverse TASP C2 contexts, as well as a strategy for specifying, tailoring and using this computational environment to conduct experiments to examine such contexts. We conclude then by summarizing our agenda for continued research along these lines

    Computational experimentation to understand C2 for Teams of Autonomous Systems and People

    Get PDF
    The technological capabilities of autonomous systems (AS) continue to accelerate. Although AS are replacing people in many skilled mission domains and demanding environmental circumstances, people and machines have complementary capabilities, and integrated performance by AS and people working together can be superior to that of either AS or people working alone. We refer to this increasingly important phenomenon as Teams of Autonomous Systems and People (TASP), and we identify a plethora of open, command and control (C2) research, policy and decision making questions. Computational experimentation offers unmatched yet largely unexplored potential to address C2 questions along these lines. The central problem is, this kind of C2 organization experimentation capability has yet to be developed and demonstrated in the TASP domain. This is where our ongoing research project begins to make an important contribution. In this article, we motivate and introduce such TASP research, and we provide an overview of the computational environment used to experiment on TASP C2 organizations and phenomena. We summarize in turn the research method. Key results follow, and we conclude then by summarizing our agenda for continued research along these lines.Consortium for Robotics and Unmanned Systems Education and Research (CRUSER)Consortium for Robotics and Unmanned Systems Education and Research (CRUSER)Approved for public release; distribution is unlimited

    Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) 2019 Annual Report

    Get PDF
    Prepared for: Dr. Brian Bingham, CRUSER DirectorThe Naval Postgraduate School (NPS) Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) provides a collaborative environment and community of interest for the advancement of unmanned systems (UxS) education and research endeavors across the Navy (USN), Marine Corps (USMC) and Department of Defense (DoD). CRUSER is a Secretary of the Navy (SECNAV) initiative to build an inclusive community of interest on the application of unmanned systems (UxS) in military and naval operations. This 2019 annual report summarizes CRUSER activities in its eighth year of operations and highlights future plans.Deputy Undersecretary of the Navy PPOIOffice of Naval Research (ONR)Approved for public release; distribution is unlimited

    Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) 2019 Annual Report

    Get PDF
    Prepared for: Dr. Brian Bingham, CRUSER DirectorThe Naval Postgraduate School (NPS) Consortium for Robotics and Unmanned Systems Education and Research (CRUSER) provides a collaborative environment and community of interest for the advancement of unmanned systems (UxS) education and research endeavors across the Navy (USN), Marine Corps (USMC) and Department of Defense (DoD). CRUSER is a Secretary of the Navy (SECNAV) initiative to build an inclusive community of interest on the application of unmanned systems (UxS) in military and naval operations. This 2019 annual report summarizes CRUSER activities in its eighth year of operations and highlights future plans.Deputy Undersecretary of the Navy PPOIOffice of Naval Research (ONR)Approved for public release; distribution is unlimited
    corecore