20,167 research outputs found

    Living Innovation Laboratory Model Design and Implementation

    Full text link
    Living Innovation Laboratory (LIL) is an open and recyclable way for multidisciplinary researchers to remote control resources and co-develop user centered projects. In the past few years, there were several papers about LIL published and trying to discuss and define the model and architecture of LIL. People all acknowledge about the three characteristics of LIL: user centered, co-creation, and context aware, which make it distinguished from test platform and other innovation approaches. Its existing model consists of five phases: initialization, preparation, formation, development, and evaluation. Goal Net is a goal-oriented methodology to formularize a progress. In this thesis, Goal Net is adopted to subtract a detailed and systemic methodology for LIL. LIL Goal Net Model breaks the five phases of LIL into more detailed steps. Big data, crowd sourcing, crowd funding and crowd testing take place in suitable steps to realize UUI, MCC and PCA throughout the innovation process in LIL 2.0. It would become a guideline for any company or organization to develop a project in the form of an LIL 2.0 project. To prove the feasibility of LIL Goal Net Model, it was applied to two real cases. One project is a Kinect game and the other one is an Internet product. They were both transformed to LIL 2.0 successfully, based on LIL goal net based methodology. The two projects were evaluated by phenomenography, which was a qualitative research method to study human experiences and their relations in hope of finding the better way to improve human experiences. Through phenomenographic study, the positive evaluation results showed that the new generation of LIL had more advantages in terms of effectiveness and efficiency.Comment: This is a book draf

    Coalition structure generation over graphs

    No full text
    We give the analysis of the computational complexity of coalition structure generation over graphs. Given an undirected graph G = (N,E) and a valuation function v : P(N) → R over the subsets of nodes, the problem is to find a partition of N into connected subsets, that maximises the sum of the components values. This problem is generally NP-complete; in particular, it is hard for a defined class of valuation functions which are independent of disconnected members — that is, two nodes have no effect on each others marginal contribution to their vertex separator. Nonetheless, for all such functions we provide bounds on the complexity of coalition structure generation over general and minor free graphs. Our proof is constructive and yields algorithms for solving corresponding instances of the problem. Furthermore, we derive linear time bounds for graphs of bounded treewidth. However, as we show, the problem remains NP-complete for planar graphs, and hence, for any Kk minor free graphs where k ≥ 5. Moreover, a 3-SAT problem with m clauses can be represented by a coalition structure generation problem over a planar graph with O(m2) nodes. Importantly, our hardness result holds for a particular subclass of valuation functions, termed edge sum, where the value of each subset of nodes is simply determined by the sum of given weights of the edges in the induced subgraph

    Proceedings of the 11th European Agent Systems Summer School Student Session

    Get PDF
    This volume contains the papers presented at the Student Session of the 11th European Agent Systems Summer School (EASSS) held on 2nd of September 2009 at Educatorio della Providenza, Turin, Italy. The Student Session, organised by students, is designed to encourage student interaction and feedback from the tutors. By providing the students with a conference-like setup, both in the presentation and in the review process, students have the opportunity to prepare their own submission, go through the selection process and present their work to each other and their interests to their fellow students as well as internationally leading experts in the agent field, both from the theoretical and the practical sector. Table of Contents: Andrew Koster, Jordi Sabater Mir and Marco Schorlemmer, Towards an inductive algorithm for learning trust alignment . . . 5; Angel Rolando Medellin, Katie Atkinson and Peter McBurney, A Preliminary Proposal for Model Checking Command Dialogues. . . 12; Declan Mungovan, Enda Howley and Jim Duggan, Norm Convergence in Populations of Dynamically Interacting Agents . . . 19; Akın Günay, Argumentation on Bayesian Networks for Distributed Decision Making . . 25; Michael Burkhardt, Marco Luetzenberger and Nils Masuch, Towards Toolipse 2: Tool Support for the JIAC V Agent Framework . . . 30; Joseph El Gemayel, The Tenacity of Social Actors . . . 33; Cristian Gratie, The Impact of Routing on Traffic Congestion . . . 36; Andrei-Horia Mogos and Monica Cristina Voinescu, A Rule-Based Psychologist Agent for Improving the Performances of a Sportsman . . . 39; --Autonomer Agent,Agent,Künstliche Intelligenz

    Trust beyond reputation: A computational trust model based on stereotypes

    Full text link
    Models of computational trust support users in taking decisions. They are commonly used to guide users' judgements in online auction sites; or to determine quality of contributions in Web 2.0 sites. However, most existing systems require historical information about the past behavior of the specific agent being judged. In contrast, in real life, to anticipate and to predict a stranger's actions in absence of the knowledge of such behavioral history, we often use our "instinct"- essentially stereotypes developed from our past interactions with other "similar" persons. In this paper, we propose StereoTrust, a computational trust model inspired by stereotypes as used in real-life. A stereotype contains certain features of agents and an expected outcome of the transaction. When facing a stranger, an agent derives its trust by aggregating stereotypes matching the stranger's profile. Since stereotypes are formed locally, recommendations stem from the trustor's own personal experiences and perspective. Historical behavioral information, when available, can be used to refine the analysis. According to our experiments using Epinions.com dataset, StereoTrust compares favorably with existing trust models that use different kinds of information and more complete historical information

    Anytime coalition structure generation on synergy graphs

    No full text
    We consider the coalition structure generation (CSG) problem on synergy graphs, which arises in many practical applications where communication constraints, social or trust relationships must be taken into account when forming coalitions. We propose a novel representation of this problem based on the concept of edge contraction, and an innovative branch and bound approach (CFSS), which is particularly efficient when applied to a general class of characteristic functions. This new model provides a non-redundant partition of the search space, hence allowing an effective parallelisation. We evaluate CFSS on two benchmark functions, the edge sum with coordination cost and the collective energy purchasing functions, comparing its performance with the best algorithm for CSG on synergy graphs: DyCE. The latter approach is centralised and cannot be efficiently parallelised due to the exponential memory requirements in the number of agents, which limits its scalability (while CFSS memory requirements are only polynomial). Our results show that, when the graphs are very sparse, CFSS is 4 orders of magnitude faster than DyCE. Moreover, CFSS is the first approach to provide anytime approximate solutions with quality guarantees for very large systems (i.e., with more than 2700 agents
    corecore