298,834 research outputs found

    Experimental Verification of a Depth Controller using Model Predictive Control with Constraints onboard a Thruster Actuated AUV

    Get PDF
    In this work a depth and pitch controller for an autonomous underwater vehicle (AUV) is developed. This controller uses the model predictive control method to manoeuvre the vehicle whilst operating within the defined constraints of the AUV actuators. Experimental results are given for the AUV performing a step change in depth whilst maintaining zero pitch

    Some remarks on wheeled autonomous vehicles and the evolution of their control design

    Full text link
    Recent investigations on the longitudinal and lateral control of wheeled autonomous vehicles are reported. Flatness-based techniques are first introduced via a simplified model. It depends on some physical parameters, like cornering stiffness coefficients of the tires, friction coefficient of the road, ..., which are notoriously difficult to identify. Then a model-free control strategy, which exploits the flat outputs, is proposed. Those outputs also depend on physical parameters which are poorly known, i.e., the vehicle mass and inertia and the position of the center of gravity. A totally model-free control law is therefore adopted. It employs natural output variables, namely the longitudinal velocity and the lateral deviation of the vehicle. This last method, which is easily understandable and implementable, ensures a robust trajectory tracking problem in both longitudinal and lateral dynamics. Several convincing computer simulations are displayed.Comment: 9th IFAC Symposium on Intelligent Autonomous Vehicles (Leipzig, Germany, 29.06.2016 - 01.07.2016

    Autonomous Vehicle Public Transportation System: Scheduling and Admission Control

    Get PDF
    Technology of autonomous vehicles (AVs) is getting mature and many AVs will appear on the roads in the near future. AVs become connected with the support of various vehicular communication technologies and they possess high degree of control to respond to instantaneous situations cooperatively with high efficiency and flexibility. In this paper, we propose a new public transportation system based on AVs. It manages a fleet of AVs to accommodate transportation requests, offering point-to-point services with ride sharing. We focus on the two major problems of the system: scheduling and admission control. The former is to configure the most economical schedules and routes for the AVs to satisfy the admissible requests while the latter is to determine the set of admissible requests among all requests to produce maximum profit. The scheduling problem is formulated as a mixed-integer linear program and the admission control problem is cast as a bilevel optimization, which embeds the scheduling problem as the major constraint. By utilizing the analytical properties of the problem, we develop an effective genetic-algorithm-based method to tackle the admission control problem. We validate the performance of the algorithm with real-world transportation service data.Comment: 16 pages, 10 figure

    Longitudinal Dynamic versus Kinematic Models for Car-Following Control Using Deep Reinforcement Learning

    Full text link
    The majority of current studies on autonomous vehicle control via deep reinforcement learning (DRL) utilize point-mass kinematic models, neglecting vehicle dynamics which includes acceleration delay and acceleration command dynamics. The acceleration delay, which results from sensing and actuation delays, results in delayed execution of the control inputs. The acceleration command dynamics dictates that the actual vehicle acceleration does not rise up to the desired command acceleration instantaneously due to dynamics. In this work, we investigate the feasibility of applying DRL controllers trained using vehicle kinematic models to more realistic driving control with vehicle dynamics. We consider a particular longitudinal car-following control, i.e., Adaptive Cruise Control (ACC), problem solved via DRL using a point-mass kinematic model. When such a controller is applied to car following with vehicle dynamics, we observe significantly degraded car-following performance. Therefore, we redesign the DRL framework to accommodate the acceleration delay and acceleration command dynamics by adding the delayed control inputs and the actual vehicle acceleration to the reinforcement learning environment state, respectively. The training results show that the redesigned DRL controller results in near-optimal control performance of car following with vehicle dynamics considered when compared with dynamic programming solutions.Comment: Accepted to 2019 IEEE Intelligent Transportation Systems Conferenc

    Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    Get PDF
    Problems related to an unmanned exploration of the planet Mars by means of an autonomous roving planetary vehicle are investigated. These problems include: design, construction and evaluation of the vehicle itself and its control and operating systems. More specifically, vehicle configuration, dynamics, control, propulsion, hazard detection systems, terrain sensing and modelling, obstacle detection concepts, path selection, decision-making systems, and chemical analyses of samples are studied. Emphasis is placed on development of a vehicle capable of gathering specimens and data for an Augmented Viking Mission or to provide the basis for a Sample Return Mission

    Car collision avoidance with velocity obstacle approach

    Get PDF
    The obstacle avoidance maneuver is required for an autonomous vehicle. It is essential to define the system's performance by evaluating the minimum reaction times of the vehicle and analyzing the probability of success of the avoiding operation. This paper presents a collision avoidance algorithm based on the velocity bstacle approach that guarantees collision-free maneuvers. The vehicle is controlled by an optimal feedback control named FLOP, designed to produce the best performance in terms of safety and minimum kinetic collision energy. Dimensionless accident evaluation parameters are proposed to compare different crash scenarios
    corecore