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Abstract— The obstacle avoidance maneuver is required for 
an autonomous vehicle. It is essential to define the system's 
performance by evaluating the minimum reaction times of the 
vehicle and analyzing the probability of success of the avoiding 
operation. This paper presents a collision avoidance algorithm 
based on the velocity obstacle approach that guarantees 
collision-free maneuvers. The vehicle is controlled by an optimal 
feedback control named FLOP, designed to produce the best 
performance in terms of safety and minimum kinetic collision 
energy. Dimensionless accident evaluation parameters are 
proposed to compare different crash scenarios.  

Keywords— Velocity obstacle; collision avoidance; optimal 
feedback control; 

I.  INTRODUCTION 
The autonomous vehicle is one of the most challenging 

research topics that through the years has acquired such an 
interest due to the development of technology aiming at 
increasing the vehicle automation. The progressive use of 
increasingly cutting-edge technological solutions arises from 
the need to improve both transport efficiency and safety.  

Recently, the introduction of autonomous driving vehicles 
and driver assistance systems has been strongly questioned as 
there is no clear regulation on the actual assessment of the 
safety level of such systems. A particular interest is addressed 
to all those systems that take the complete control of the 
vehicle, due to an approaching danger. As we can expect, 
there’s no guarantee that the action taken by the system is able 
to avoid the accident. So, while technology can help in 
dangerous situations by overcoming the human limits, i.e. 
Reaction Time (RT), on the other hand testing and comparing 
the intelligent system in different scenarios and evaluate the 
reliability of an assisted or autonomous driving system is 
necessary [1-4].  

The RT, in a critical situation, determines the success of 
the evading maneuver, as it represents the time in which the 
person or the artificial intelligence reacts to the external 
stimulus. The factors that influence the time of human reaction 

are related to the age of the driver, the environmental 
disturbances coming from both outside and inside or 
electronic devices such as cell phones.  

This paper focuses on the analysis of critical obstacle 
avoidance problems in which the RT necessary to perform a 
safe maneuver doesn’t reach the human capabilities. To 
achieve this task, the authors propose a robust control system 
suited for any vehicle as a first step to an ongoing research 
project of the Mechatronic and Vehicle Dynamic Lab of 
Sapienza [5-7]. The method is called Feedback Local 
Optimality Principle (FLOP) and belongs to the class of 
variational controls. It can take into account the nonlinearities 
of the dynamic model, allowing an improved performance in 
extreme tasks. Moreover, it allows the use of any 
differentiable cost function well suited for the desired 
maneuver. In addition, the authors propose indexes that can 
define the safety of a control system in different scenarios later 
analyzed, allowing an objective comparison. 

II. OBSTACLE AVOIDANCE CONTROL MANEUVER 
The self-driving vehicle usually has different levels of 

automation organized according to priority procedures 
decided a priori. In this work we focus on the high-level 
driving management architecture in which the vehicle 
constantly follows a set trajectory and the obstacle avoidance 
system intervenes when an obstacle is detected on the route. 
The overall architecture is represented in Fig. 1 in which the 
control, called FLOP, manages the steering, brake or 
acceleration actuators 𝒖 of a vehicle to track an imposed target 
𝒙𝑡, by minimizing a given objective function 𝐸 (𝒙𝑡). The 
decision logic analyses the input of the road and the 
proprioceptive sensors 𝒙𝒆𝒔𝒕 to decide when to intervene and 
switch the control from the simple tracking of the trajectory to 
the obstacle avoidance maneuver. The control strategy does 
not include predictive control techniques but is based on 
purely feedback control. This choice is due to the fact that 
prediction systems often require high computing performance 
and need time to establish an optimal control 



Fig. 1.  The estimated state enters the control logic with road info, obstacle detections info and reference trajectory. The Decision-Maker chooses between path 
following or obstacle avoidance logic. The target is then fed to the FLOP control through a custom cost function, that produces the control for the vehicle.

solution. However, the control architecture has the advantage 
of making a forecast of the future thanks to analysis of the 
instantaneous speed field, able to predict the evolution of an 
obstacle and then choose the best maneuver.   

In this work it is studied how the FLOP can control the 
vehicle during incipient accident, in which the estimated time 
of crash is approximately 1-2 seconds. The following 
paragraphs illustrate the autonomous driving simulator. First 
of all, the dynamic model of the vehicle is described, then the 
operation of the FLOP control is explained and finally the 
operation of the obstacle avoidance strategy in the speed field 
is described in detail. In conclusion, the performance of the 
new architecture is analyzed by analyzing different accident 
scenarios and defining an index for estimating the quality of 
global control. 

III. VEHICLE MODEL 
 The dynamic system chosen for the analysis of the obstacle 
avoidance maneuver is the classic bike model (Fig. 2) with 3 
degrees of freedom, longitudinal, lateral and yaw motion and 
three degrees of control,  the front steering wheel and the rear 
and front torques. The bike model depicted in Fig. 2 has the 
longitudinal and lateral velocities in the body reference 𝑢,𝑣, 
respectively, and the yaw angle rate 𝜔. The rotation speed of 
both front and rear wheels is 𝜔𝑓 and 𝜔𝑟, respectively. The 
generalized speed 𝝂  is expressed in the body reference frame 
as 𝝂 = [𝑢, 𝑣, 𝜔, 𝜔𝑓, 𝜔𝑟]

𝑇
; the position of the center of gravity 

in the earth fixed frame, is expressed by X and Y that together 
with the vehicle orientation 𝜓  produces 𝜼 = [𝑋, 𝑌, 𝜓]𝑇. The 
control variables are the front wheel steering angle 𝛿 and the 
torque on both the rear and front wheel, named 𝐶𝑟 and 𝐶𝑓, 
respectively. The equations of motion have the form:  

𝑴�̇� + 𝑪(𝝂)𝝂 = 𝝉   

 �̇� = 𝑱(𝜓)𝝂  

where 

𝑴 =  𝑑𝑖𝑎𝑔[𝑚,𝑚, 𝐼𝑧, 𝐼𝑤, 𝐼𝑤] 

(1) 

𝑪(𝝂) =

[
 
 
 
 

0 𝑚𝜔 0 0 0
−𝑚𝜔 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0]

 
 
 
 
  

 𝑱(𝜓) = [
cos(𝜓)−sin(𝜓)0
sin(𝜓) cos(𝜓) 0

0 0 1
] 

𝝉 =

[
 
 
 
 
 𝐹𝑙𝑜𝑛𝑔𝑓 cos(𝛿) − 𝐹𝑙𝑎𝑡𝑓 sin(𝛿) + 𝐹𝑙𝑜𝑛𝑔𝑟

𝐹𝑙𝑜𝑛𝑔𝑓 sin(𝛿) + 𝐹𝑙𝑎𝑡𝑓 cos(𝛿) + 𝐹𝑙𝑎𝑡𝑟

𝐹𝑙𝑜𝑛𝑔𝑓 sin(𝛿) 𝑙𝑓 + 𝐹𝑙𝑎𝑡𝑓 cos(𝛿) 𝑙𝑓 − 𝐹𝑙𝑎𝑡𝑟𝑙𝑟
𝐶𝑓 + 𝑟𝑤𝐹𝑙𝑜𝑛𝑔𝑓 − 𝐶𝑟𝑜𝑙𝑙𝑓
𝐶𝑟 + 𝑟𝑤𝐹𝑙𝑜𝑛𝑔𝑟 − 𝐶𝑟𝑜𝑙𝑙𝑟 ]

 
 
 
 
 

 

 

 
Fig. 2.  Bike model 

where 𝑚, 𝐼𝑧, 𝐼𝑤, 𝑙𝑓, 𝑙𝑟, 𝑟𝑤, 𝐹𝑙𝑜𝑛𝑔, 𝐹𝑙𝑎𝑡 , 𝐶𝑟𝑜𝑙𝑙𝑖𝑛𝑔 are the vehicle 
mass, the vehicle body rotational inertia, the wheel rotational 
inertia, the rear and front wheel distance from the center of 
gravity, the wheel radius, the longitudinal and lateral Pacejka 
forces and the rolling resistance, respectively. The contact 
forces are modelled by the Pacejka model. The Pacejka model 
uses nonlinear functions in terms of the longitudinal and 
lateral slip ratios 𝜎, 𝛼 , together with a linear dependence on 
the normal forces 𝐹𝑁 acting on the wheels. Nowadays it is 
possible to measure the real time conditions of the tires grip, 
thanks to the development of embedded sensors such as in [8]. 
The rolling resistance is a quadratic function of the 
longitudinal speed: 
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𝐹𝑙𝑜𝑛𝑔(𝐹𝑁, 𝜎, 𝛼)  ;   𝐹𝑙𝑎𝑡(𝐹𝑁, 𝜎, 𝛼)  ;   𝐶𝑟𝑜𝑙𝑙(𝑢, 𝐹𝑁)    (2) 

Now arranging in a first order dynamic system with the 
state variable 𝒙 = [𝜼, 𝝂]𝑇 and the control variable 𝒖 =
[𝛿, 𝐶𝑓, 𝐶𝑟]

𝑇
 we have the general form: 

�̇� = 𝝓(𝒙) + 𝒉(𝒙, 𝒖) (3) 

IV. A RESUME OF THE FEEDBACK CONTROL LAW FLOP 
The control technique developed by the authors belongs to 

the class of variational controls but use a local optimality 
principle instead of a global one [4-6]. The problem statement 
is the classical one, with a performance index J,̅ integral of the 
cost function 𝐸(𝒙, 𝒖) subject to the dynamic equation of the 
system, that is minimized (or maximized) along the time 
interval [0, T]: 

min 𝐽 ̅ = ∫ 𝐸(𝒙, 𝒖)𝑑𝑡
𝑇

0
 

subject to 

�̇� = 𝒇(𝒙(𝑡), 𝒖(𝑡)) 

𝒙(0) = 𝒙𝟎 

(4) 

that leads to  

min 𝐽 = ∫ 𝐸(𝒙, 𝒖) + 𝝀𝑇(�̇� − 𝒇(𝒙, 𝒖)) 𝑑𝑡
𝑇

0
 (5) 

where 𝒙 is the system state and 𝒖 is the control vector. The 
dynamic equation of the controlled system  
�̇� = 𝒇(𝒙, 𝒖, 𝑡) with its known initial condition 𝒙(0) =
𝒙𝟎 represents a constraint between 𝒙 and 𝒖, introduced 
through the Lagrange multiplier 𝝀(𝑡). The solution to (4) 
provides both the optimal control 𝒖∗(𝑡) and the 
corresponding optimal trajectory 𝒙∗(𝑡). 

The Feedback Local Optimality Principle-FLOP consists 
of dividing integral (5) into 𝑁 = 𝑇/𝛥𝜏 sub-integrals, where 
Δτ is the time horizon of each one. Then the minimization is 
applied to every integral leading to local optimality criterion: 

𝐽 = ∑𝐽𝑖 = ∑∫ ℒ(�̇�, 𝒙, 𝒖, 𝝀)𝑑𝑡
𝑈𝐵𝑖

𝐿𝐵𝑖

𝑁

𝑖=1

𝑁

𝑖=1

 

min(𝐽𝑖) ∀ 𝑖 

(6) 

where UBi and LBi limits are the upper bound and lower 
bound for each time interval, respectively. Moreover, for 
each interval, the transversality conditions hold: 

𝒙𝐿𝐵𝑖 = 𝒙𝑈𝐵𝑖−1      ;        𝝀𝑈𝐵𝑖 = 𝟎 (7) 

The advantage of this approach is the chance of obtaining a 
feedback control law without the limitation of having a 
quadratic cost function and a linear dynamic model. 
However, there are some limitations to meet. The dynamic 
model has to be of the type �̇� = 𝝓(𝒙) + 𝑩𝒖, where 𝝓(𝒙) is 
differentiable in the state space. The cost function has to be 
of the type  1

2
𝒖𝑇𝑹𝒖 + 𝑔(𝒙), where 𝑔(𝒙) is also differentiable 

in the state space. On the other hand, this allows to use every 
function best suited for the task assigned to the model, 
especially for the obstacle avoidance as it can be chosen a 
function that is limited in the state space instead of a quadratic 
one. The last disadvantage is the fact that the found solution 
is a sub-optimal one with respect to the classical approach 
and is sensitive to the parameter Δτ. 
So, the problem statement including the generalization of the 
cost function by 𝑔(𝒙), and the formulation for the dynamics, 
is: 

𝑚𝑖𝑛 𝐽 = ∫ 1
2
𝒖𝑇𝑹𝒖 + 𝑔(𝒙) + 𝝀𝑇(�̇� − (𝝓(𝒙) + 𝑩𝒖)) 𝑑𝑡𝑇

0   (8) 

to which is applied the Euler-Lagrange method:  

 {
𝛻𝒙𝑔−𝛻𝒙𝝓𝑇𝝀 − �̇� = 𝟎

𝑹𝑇𝒖 − 𝑩𝑇𝝀 = 𝟎
�̇� = 𝝓(𝒙) + 𝑩𝒖

 ∀𝑡 ∈ [0, 𝑇] (9) 

At this point we apply the local optimality principle through 
finite difference technique with a time step equal to the 
integration step Δ𝜏. This leads to: 

�̇� ≈
𝝀𝑈𝐵𝑖 − 𝝀𝐿𝐵𝑖

𝛥𝜏
= −

𝝀𝐿𝐵𝑖

𝛥𝜏
 

𝛻𝒙𝑔|𝐿𝐵𝑖−𝛻𝒙𝝓𝑇|𝐿𝐵𝑖𝝀𝐿𝐵𝑖 +
𝝀𝐿𝐵𝑖

𝛥𝜏
= 𝟎 

(10) 

solve for 𝝀𝐿𝐵𝑖 : 

𝝀𝐿𝐵𝑖 = [𝛻𝒙𝝓𝑇|𝐿𝐵𝑖 −
1
𝛥𝜏

𝑰]
−1

𝛻𝒙𝑔|𝐿𝐵𝑖  (11) 

This expression, substituted into the second equation of (9), 
leads to: 

𝒖𝐿𝐵𝑖 = 𝑹−𝑇𝑩𝑇 [𝛻𝒙𝝓𝑇|𝐿𝐵𝑖 −
1
𝛥𝜏

𝑰]
−1

𝛻𝒙𝑔|𝐿𝐵𝑖  (12) 

V. OBSTACLE AVOIDANCE 
There are several techniques that are used for identifying 

the obstacles [9-11] and here, for the first time, the Velocity 
Obstacles (VO) method is used in the automotive field. The 
VO technique brings the analysis to the velocity space of the 
vehicle, then allowing a predictive control. The speed space in 
which an accident is predicted is defined by two categories of 
obstacles: (i) the finite-sized obstacles such as vehicles, 
pedestrians, bicycles, etc. and (ii) the infinite length of 
obstacles i.e. the edges of the road. 



A. The VO area for finite-sized obstacles 
The VO area for finite-sized obstacle consists of the 

Minkowsky sum of the two vehicles geometric shapes [12], 
identifying un unsafe sub-space of relative velocities that will 
cause future accidents (Fig. 3). 

 
Fig. 3.  Definition of the VO area with the Minkowsky sum. 

Then the 𝑉𝑂 area is translated of the 𝑽𝑂 obstacle velocity 
to identify the sub-space of velocities in the fixed reference 
frame where the velocity vector of the controlled vehicle 𝑽   
doesn’t have to fall to avoid the accident.  

B. The VO area for the road boundary 
Since the edge of the road is an infinite object, the classic 

VO with the sum of Minkowsky cannot be applied. In this 
case, the critical speed area (VO area) is identified a priori by 
a parallel line to the edge of the road (Fig. 4).  

 
Fig. 4.  The road obstacle identification in the velocity space. 

The velocity threshold 𝑽𝑡ℎ(𝑽, 𝛼, 𝑑)  is a function of the 
dynamic behavior of the vehicle, i.e. the vehicle speed 𝑽, its 
orientation 𝛼 and the distance 𝑑  from the boundary road (see 
figure 5). The  𝑽𝑡ℎ is found by several numerical tests and it 
identify the maximum orthogonal speed component (𝑽⊥) 
before the roadside avoidance control is activated. The 
threshold is performed, so as, to control the vehicle without 
risking an accident. Instead, if the condition ‖𝑽⊥‖ < ‖𝑽th‖ is 
satisfied, the vehicle is free to move. 

 
Fig. 5.  The  velocity thershold in fuction of the road distance 𝑑, the 

speed orientation 𝛼 for a fixed speed 𝑽. 

VI. THE OBSTACLE AVOIDANCE CONTROL IN EXAMPLE 
SCENARIO 

The Fig. 6 shows a general crash scenario in the velocity 
space where the velocity of the vehicle 𝑽 is in the VO area 
(i.e. the 𝑃𝐴 point). As we can see, the velocity space is limited 
by the road boundaries and the upper-lower observation 
limits. These last depend on the characteristics of the vehicle 
itself and are tuning parameters. The upper limit observation 
is in function of the acceleration capability of the vehicle and 
it changes proportionally varying the speed 𝑽, viceversa, the 
lower limit is function of the brake capabilities of the vehicle. 
The resulting area is divided by several crash areas (red) and 
free ones (green). The widest no-crash area represents the 
target zone where the vehicle is brought in to the 𝑃𝑇  target 
point. The obstacle avoidance is active until there is at least a 
cone red area. 

 
Fig. 6.  Velocity space for obstacle avoidance maneuvering. 

Once an obstacle avoidance maneuver is turned on, the 
standard cost function to follow the path trajectory [13] is 
abandoned and the 𝑔(𝒙) cost function defined in (8) is 
switched in 𝑔𝑂𝐴(𝒙) where the target point 𝑃𝑇  is reached in 
function of the yaw, the angular velocity and the lateral-
longitudinal speed targets. 

𝑔𝑂𝐴(𝒙) = 𝑔1(𝜓) + 𝑔2(𝜔) + 𝑔3(𝑢, 𝑣)  

with 

𝑔1(𝜓) =
1
2𝑞1(𝜓 − 𝜓𝑇)2 

𝑔2(𝜔) =
1
2𝑞2𝜔2 

𝑔3(𝑢, 𝑣) =
1
2

(𝑽 − 𝑽𝑡)𝑇𝑸(‖𝑽 − 𝑽𝑡‖)(𝑽 − 𝑽𝑡) 

(13) 

where 𝑞1, 𝑞2 and the matrix 𝑸 are tuning coefficients. The 𝑔1 
function is useful to orient the yaw of the vehicle along the 
𝑃𝑇  direction, the 𝑔2 is needed to mitigate the angular speed 
and finally the 𝑔3 is to establish a smooth rate of change of 
speed in order to reach the desired target speed. The gradient 
of 𝑔3 is plotted in Fig. 7 where, thanks to the variability of 
the 𝑸-gains proportionally to the norm ‖𝑽 − 𝑽𝑡‖, the vehicle 
is quickly moved away from the crash area and slowly drawn 
into the safest zone. 

I. SAFETY INDEXES 
In order to assess the quality of a control logic, three 

indexes have been defined to analyze the quality of a 
maneuver: (i) the probability of a crash, (ii) the analysis of 
kinetic energy exchanged during the impact, and finally (iii) 
the minimum obstacle avoidance distance. All three 
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parameters are assessed according to the type of scenario and 
the vehicle and obstacle condition.  

 
Fig. 7.  Gradient of custom cost function: the shape is accustomed to let 

the slope be hight in the VO area and smooth in the safe area. 

The probability of crash 𝑃 is the ratio between the 
simulations which end with a crash, and the total number of 
simulations. 

𝑃 =
𝑁𝑐𝑟𝑎𝑠ℎ𝑒𝑠

𝑁𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠
% (14) 

The probability of crash is studied in function of a 
dimensionless parameter 𝜒 that represent the ratio between the 
free maneuver time 𝜏𝑚  and crash time 𝜏𝑐 so defined: 

𝜒 =
𝜏𝑚

𝜏𝑐
 (15) 

The free maneuver time 𝜏𝑚, is the ratio between the free 
lateral space (𝐿 − 𝐶 − 𝐶𝑂), i.e. 𝐿  the carriage width, 𝐶 and 𝐶𝑂  
the lateral obstructed space of the controlled and uncontrolled 
vehicle, over the speed of the controlled vehicle ‖𝑽‖ (see Fig. 
9): 

𝜏𝑚 =
𝐿 − 𝐶 − 𝐶𝑂

‖𝑽‖  (16) 

Instead the time crash 𝜏𝑐 gives the information about how 
long it takes to do an accident:  

𝜏𝑐 =
𝑑

‖𝑽 − 𝑽𝑂‖
 (17) 

where 𝑑 is the relative distance between the controlled vehicle 
and the obstacle.  

The second quality index is related to the crash cases and 
analyzes the severity of the accidents through the evaluation 
of the kinetic energy involved 𝐾.  

𝐾 =
1
2

𝑚𝑉�̂�
𝟐 (18) 

where the 𝑉�̂� is the orthogonal crash component, i.e. along �̂�, 
of the relative impact speed 𝑽𝑂 − 𝑽 between the controlled 
vehicle and the obstacle (see Fig. 8). 

 
Fig. 8.  Orthogonal component to the vehicle of the relative velocity of 

the crash. 

The last index is the minimum distance 𝑑𝑚𝑖𝑛  between the 
vehicles during the successful maneuvers. This parameter 
defines the degree of reliability of the maneuver, in fact, even 
if the crash is avoided it is useful to check how far the 
controlled vehicle has passed. 

II. SIMULATIONS AND RESULTS 
In this section, the performances of the proposed control 

system are investigated in the frontal, the plugging and the 
crossroad crash scenarios. The random simulations are built in 
a way that the initial velocity of the controlled vehicle is 
always in the VO area, i.e. always in crash condition. The 
varying parameters are equals for the different scenarios: the 
initial speed of both the controlled vehicle and the obstacle (𝑽 
and 𝑽𝑂), the initial yaw (𝜓 and 𝜓𝑂),  the initial position and 
distance as is shown in figures 9 and 10. The crossroad 
scenario is tested also varying the angle 𝛾 of the of the side 
lane (see fig. 10). The obstacle velocity is constant through the 
entire simulation.  

 
Fig. 9.  Frontal crash scenario. 

 
Fig. 10.  Crossroad crash scenario. 

The results of the simulations are expressed according to 
the following figures, going to investigate the probability of 
accident, the severity of the accidents not avoided, the 
minimum distance between the two vehicles of the avoidance 
maneuver. 

From Fig. 11 it is noted that at a value of 0.27 of 𝜒, the 
Frontal curve has a knee, after which it shows a very high 
positive slope. The high value means a strong separation 
between the safe zone and the incident zone, indicating the 
achievement of a physical limit of the scenario. The presence 
of the knee also suggests that it is not possible to avoid all 
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accidents, since not all the maneuvers required to avoid the 
vehicle belong to the configuration space reached by the same. 
Regarding the Plugging curve, it can be seen that the keen is 
near the Frontal one, showing a similar behavior between the 
scenarios, although the Plugging one has a stronger slope. 
Regarding the Crossroad curve we see a slightly different 
trend with respect to the previous curves, where the 𝜒 
corresponding to the knee is greater and the slope is softer. 
This is because the obstruction of the obstacle is greater, being 
on the side compared to the controlled vehicle. It is therefore 
important to analyze the danger from the point of view of the 
kinetic energy involved. 

 
Fig. 11.  Probability of crash for different crash scenarios. 

The Fig. 12 shows the comparison of the mean kinetic 
energy between different scenarios. The evolution of kinetic 
energy gives us the possibility to evaluate the seriousness of 
the accident even in all those cases where the probability is 
close to 100%. In the figure 12 is shown how the frontal 
accident reaches higher values of kinetic energy for low 𝜒.  

 
Fig. 12.  Kinetic energy involved in the different scenarios. 

Finally, the trend of the minimum distances between the 
vehicles for the avoidance maneuvers are shown. We can see 
in Fig. 13 that the vehicle performs safer maneuvers for higher 
values of 𝜒. 

I. CONCLUSIONS 
The authors present a new control algorithm for avoidance 

of obstacles for autonomous driving vehicles. The VO based 
control system is used purely in feedback to increase the 
computational performance usually required by more 
elaborate controllers such as the NMPC. The performance of 
the controlled system is assessed by observing quality analysis 
indices of the avoidance maneuver. All the maneuvers are 
performed starting from a limit condition in which the vehicle 
finds itself in a potential accident condition. The FLOP 
control, used to drive the vehicle, makes it possible to manage 
nonlinear dynamic systems, thus keeping the real vehicle's 

characteristics unchanged. Moreover, the optimal variational 
control FLOP gives the possibility to use nonlinear cost 
functions in the state, allowing to test different shapes of 
useful functions for the improvement of the maneuver. 

 
Fig. 13.  Minimum distances between the vehicles for the successful 

maneuvers in different scenarios. 
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