58,653 research outputs found

    Autonomous Trail Following

    Get PDF
    Trails typically lack standard markers that characterize roadways. Nevertheless, trails are useful for off-road navigation. Here, trail following problem is approached by identifying the deviation of the robot from the heading direction of the trail by fine-tuning a pre-trained Inception-V3 [1] network. Key questions considered in this work include the required number, nature and geometry of the cameras and how trail types -- encoded in pre-existing maps -- can be exploited in addressing this task. Through evaluation of representative image datasets and on-robot testing we found: (i) that although a single camera cannot estimate angular deviation from the heading direction, but it can reliably detect that the robot is, or is not, following the trail; (ii) that two cameras pointing towards the left and the right can be used to estimate heading reliably within a differential framework; (iii) that trail nature is a useful tool for training networks for different trail types

    Emerging robot swarm traffic

    Get PDF
    We discuss traffic patterns generated by swarms of robots while commuting to and from a base station. The overall question is whether to explicitly organise the traffic or whether a certain regularity develops `naturally'. Human driven motorized traffic is rigidly structured in two lanes. However, army ants develop a three-lane pattern in their traffic, while human pedestrians generate a main trail and secondary trials in either direction. Our robot swarm approach is bottom-up: designing individual agents we first investigate the mathematics of cases occurring when applying the artificial potential field method to three 'perfect' robots. We show that traffic lane pattern will not be disturbed by the internal system of forces. Next, we define models of sensor designs to account for the practical fact that robots (and ants) have limited visibility and compare the sensor models in groups of three robots. In the final step we define layouts of a highway: an unbounded open space, a trail with surpassable edges and a hard defined (walled) highway. Having defined the preliminaries we run swarm simulations and look for emerging traffic patterns. Apparently, depending on the initial situation a variety of lane patterns occurs, however, high traffic densities do delay the emergence of traffic lanes considerably. Overall we conclude that regularities do emerge naturally and can be turned into an advantage to obtain efficient robot traffic

    Virtual-to-Real-World Transfer Learning for Robots on Wilderness Trails

    Full text link
    Robots hold promise in many scenarios involving outdoor use, such as search-and-rescue, wildlife management, and collecting data to improve environment, climate, and weather forecasting. However, autonomous navigation of outdoor trails remains a challenging problem. Recent work has sought to address this issue using deep learning. Although this approach has achieved state-of-the-art results, the deep learning paradigm may be limited due to a reliance on large amounts of annotated training data. Collecting and curating training datasets may not be feasible or practical in many situations, especially as trail conditions may change due to seasonal weather variations, storms, and natural erosion. In this paper, we explore an approach to address this issue through virtual-to-real-world transfer learning using a variety of deep learning models trained to classify the direction of a trail in an image. Our approach utilizes synthetic data gathered from virtual environments for model training, bypassing the need to collect a large amount of real images of the outdoors. We validate our approach in three main ways. First, we demonstrate that our models achieve classification accuracies upwards of 95% on our synthetic data set. Next, we utilize our classification models in the control system of a simulated robot to demonstrate feasibility. Finally, we evaluate our models on real-world trail data and demonstrate the potential of virtual-to-real-world transfer learning.Comment: iROS 201
    • …
    corecore