294 research outputs found

    Designing and Managing Advanced, Intelligent and Ethical Health and Social Care Ecosystems

    Get PDF
    The ongoing transformation of health systems around the world aims at personalized, preventive, predictive, participative precision medicine, supported by technology. It considers individual health status, conditions, and genetic and genomic dispositions in personal, social, occupational, environmental and behavioral contexts. In this way, it transforms health and social care from art to science by fully understanding the pathology of diseases and turning health and social care from reactive to proactive. The challenge is the understanding and the formal as well as consistent representation of the world of sciences and practices, i.e., of multidisciplinary and dynamic systems in variable context. This enables mapping between the different disciplines, methodologies, perspectives, intentions, languages, etc., as philosophy or cognitive sciences do. The approach requires the deployment of advanced technologies including autonomous systems and artificial intelligence. This poses important ethical and governance challenges. This paper describes the aforementioned transformation of health and social care ecosystems as well as the related challenges and solutions, resulting in a sophisticated, formal reference architecture. This reference architecture provides a system-theoretical, architecture-centric, ontology-based, policy-driven model and framework for designing and managing intelligent and ethical ecosystems in general and health ecosystems in particular.Peer reviewe

    Autonomous systems and artificial intelligence – Hype or prerequisite for P5 medicine?

    Get PDF
    For meeting the challenge of aging, multi-diseased societies, cost containment, workforce development and consumerism by improved care quality and patient safety as well as more effective and efficient care processes, health and social care systems around the globe undergo an organizational, methodological and technological transformation towards personalized, preventive, predictive, participative precision medicine (P5 medicine). This paper addresses chances, challenges and risks of specific disruptive methodologies and technologies for the transformation of health and social care systems, especially focusing on the deployment of intelligent and autonomous systems

    Managing healthcare transformation towards P5 medicine (Published in Frontiers in Medicine)

    Get PDF
    Health and social care systems around the world are facing radical organizational, methodological and technological paradigm changes to meet the requirements for improving quality and safety of care as well as efficiency and efficacy of care processes. In this they’re trying to manage the challenges of ongoing demographic changes towards aging, multi-diseased societies, development of human resources, a health and social services consumerism, medical and biomedical progress, and exploding costs for health-related R&D as well as health services delivery. Furthermore, they intend to achieve sustainability of global health systems by transforming them towards intelligent, adaptive and proactive systems focusing on health and wellness with optimized quality and safety outcomes. The outcome is a transformed health and wellness ecosystem combining the approaches of translational medicine, 5P medicine (personalized, preventive, predictive, participative precision medicine) and digital health towards ubiquitous personalized health services realized independent of time and location. It considers individual health status, conditions, genetic and genomic dispositions in personal social, occupational, environmental and behavioural context, thus turning health and social care from reactive to proactive. This requires the advancement communication and cooperation among the business actors from different domains (disciplines) with different methodologies, terminologies/ontologies, education, skills and experiences from data level (data sharing) to concept/knowledge level (knowledge sharing). The challenge here is the understanding and the formal as well as consistent representation of the world of sciences and practices, i.e. of multidisciplinary and dynamic systems in variable context, for enabling mapping between the different disciplines, methodologies, perspectives, intentions, languages, etc. Based on a framework for dynamically, use-case-specifically and context aware representing multi-domain ecosystems including their development process, systems, models and artefacts can be consistently represented, harmonized and integrated. The response to that problem is the formal representation of health and social care ecosystems through an system-oriented, architecture-centric, ontology-based and policy-driven model and framework, addressing all domains and development process views contributing to the system and context in question. Accordingly, this Research Topic would like to address this change towards 5P medicine. Specifically, areas of interest include, but are not limited: • A multidisciplinary approach to the transformation of health and social systems • Success factors for sustainable P5 ecosystems • AI and robotics in transformed health ecosystems • Transformed health ecosystems challenges for security, privacy and trust • Modelling digital health systems • Ethical challenges of personalized digital health • Knowledge representation and management of transformed health ecosystems Table of Contents: 04 Editorial: Managing healthcare transformation towards P5 medicine Bernd Blobel and Dipak Kalra 06 Transformation of Health and Social Care Systems—An Interdisciplinary Approach Toward a Foundational Architecture Bernd Blobel, Frank Oemig, Pekka Ruotsalainen and Diego M. Lopez 26 Transformed Health Ecosystems—Challenges for Security, Privacy, and Trust Pekka Ruotsalainen and Bernd Blobel 36 Success Factors for Scaling Up the Adoption of Digital Therapeutics Towards the Realization of P5 Medicine Alexandra Prodan, Lucas Deimel, Johannes Ahlqvist, Strahil Birov, Rainer Thiel, Meeri Toivanen, Zoi Kolitsi and Dipak Kalra 49 EU-Funded Telemedicine Projects – Assessment of, and Lessons Learned From, in the Light of the SARS-CoV-2 Pandemic Laura Paleari, Virginia Malini, Gabriella Paoli, Stefano Scillieri, Claudia Bighin, Bernd Blobel and Mauro Giacomini 60 A Review of Artificial Intelligence and Robotics in Transformed Health Ecosystems Kerstin Denecke and Claude R. Baudoin 73 Modeling digital health systems to foster interoperability Frank Oemig and Bernd Blobel 89 Challenges and solutions for transforming health ecosystems in low- and middle-income countries through artificial intelligence Diego M. López, Carolina Rico-Olarte, Bernd Blobel and Carol Hullin 111 Linguistic and ontological challenges of multiple domains contributing to transformed health ecosystems Markus Kreuzthaler, Mathias Brochhausen, Cilia Zayas, Bernd Blobel and Stefan Schulz 126 The ethical challenges of personalized digital health Els Maeckelberghe, Kinga Zdunek, Sara Marceglia, Bobbie Farsides and Michael Rigb

    Standards and Principles to Enable Interoperability and Integration of 5P Medicine Ecosystems

    Get PDF
    Health and social care ecosystems are currently a matter of foundational organizational, methodological and technological paradigm changes towards personalized, preventive, predictive, participative precision (5P) medicine. For designing and implementing such advanced ecosystems, an understanding and correct representation of structure, function and relations of their components is inevitable. To guarantee consistent and conformant processes and outcomes, the specifications and principles must be internationally standardized. Summarizing the first author's Keynotes over the last 15 years of pHealth conferences, the paper discusses concepts, standards and principles of 5P medicine ecosystems including their design and implementation. Furthermore, a guidance to find and to deploy corresponding international standards in practical projects is provided.publishedVersionPeer reviewe

    Transformation of Health and Social Care Systems—An Interdisciplinary Approach Toward a Foundational Architecture

    Get PDF
    Objective: For realizing pervasive and ubiquitous health and social care services in a safe and high quality as well as efficient and effective way, health and social care systems have to meet new organizational, methodological, and technological paradigms. The resulting ecosystems are highly complex, highly distributed, and highly dynamic, following inter-organizational and even international approaches. Even though based on international, but domain-specific models and standards, achieving interoperability between such systems integrating multiple domains managed by multiple disciplines and their individually skilled actors is cumbersome. Methods: Using the abstract presentation of any system by the universal type theory as well as universal logics and combining the resulting Barendregt Cube with parameters and the engineering approach of cognitive theories, systems theory, and good modeling best practices, this study argues for a generic reference architecture model moderating between the different perspectives and disciplines involved provide on that system. To represent architectural elements consistently, an aligned system of ontologies is used. Results: The system-oriented, architecture-centric, and ontology-based generic reference model allows for re-engineering the existing and emerging knowledge representations, models, and standards, also considering the real-world business processes and the related development process of supporting IT systems for the sake of comprehensive systems integration and interoperability. The solution enables the analysis, design, and implementation of dynamic, interoperable multi-domain systems without requesting continuous revision of existing specifications.publishedVersionPeer reviewe

    Transformation of Health and Social Care Systems—An Interdisciplinary Approach Toward a Foundational Architecture

    Get PDF
    Objective: For realizing pervasive and ubiquitous health and social care services in a safe and high quality as well as efficient and effective way, health and social care systems have to meet new organizational, methodological, and technological paradigms. The resulting ecosystems are highly complex, highly distributed, and highly dynamic, following inter-organizational and even international approaches. Even though based on international, but domain-specific models and standards, achieving interoperability between such systems integrating multiple domains managed by multiple disciplines and their individually skilled actors is cumbersome. Methods: Using the abstract presentation of any system by the universal type theory as well as universal logics and combining the resulting Barendregt Cube with parameters and the engineering approach of cognitive theories, systems theory, and good modeling best practices, this study argues for a generic reference architecture model moderating between the different perspectives and disciplines involved provide on that system. To represent architectural elements consistently, an aligned system of ontologies is used. Results: The system-oriented, architecture-centric, and ontology-based generic reference model allows for re-engineering the existing and emerging knowledge representations, models, and standards, also considering the real-world business processes and the related development process of supporting IT systems for the sake of comprehensive systems integration and interoperability. The solution enables the analysis, design, and implementation of dynamic, interoperable multi-domain systems without requesting continuous revision of existing specifications

    Health Information Systems in the Digital Health Ecosystem—Problems and Solutions for Ethics, Trust and Privacy

    Get PDF
    Digital health information systems (DHIS) are increasingly members of ecosystems, collecting, using and sharing a huge amount of personal health information (PHI), frequently without control and authorization through the data subject. From the data subject's perspective, there is frequently no guarantee and therefore no trust that PHI is processed ethically in Digital Health Ecosystems. This results in new ethical, privacy and trust challenges to be solved. The authors' objective is to find a combination of ethical principles, privacy and trust models, together enabling design, implementation of DHIS acting ethically, being trustworthy, and supporting the user's privacy needs. Research published in journals, conference proceedings, and standards documents is analyzed from the viewpoint of ethics, privacy and trust. In that context, systems theory and systems engineering approaches together with heuristic analysis are deployed. The ethical model proposed is a combination of consequentialism, professional medical ethics and utilitarianism. Privacy enforcement can be facilitated by defining it as health information specific contextual intellectual property right, where a service user can express their own privacy needs using computer-understandable policies. Thereby, privacy as a dynamic, indeterminate concept, and computational trust, deploys linguistic values and fuzzy mathematics. The proposed solution, combining ethical principles, privacy as intellectual property and computational trust models, shows a new way to achieve ethically acceptable, trustworthy and privacy-enabling DHIS and Digital Health Ecosystems

    Principles and Standards for Designing and Managing Integrable and Interoperable Transformed Health Ecosystems

    Get PDF
    The advancement of sciences and technologies, economic challenges, increasing expectations, and consumerism result in a radical transformation of health and social care around the globe, characterized by foundational organizational, methodological, and technological paradigm changes. The transformation of the health and social care ecosystems aims at ubiquitously providing personalized, preventive, predictive, participative precision (5P) medicine, considering and understanding the individual’s health status in a comprehensive context from the elementary particle up to society. For designing and implementing such advanced ecosystems, an understanding and correct representation of the structure, function, and relations of their components is inevitable, thereby including the perspectives, principles, and methodologies of all included disciplines. To guarantee consistent and conformant processes and outcomes, the specifications and principles must be based on international standards. A core standard for representing transformed health ecosystems and managing the integration and interoperability of systems, components, specifications, and artifacts is ISO 23903:2021, therefore playing a central role in this publication. Consequently, ISO/TC 215 and CEN/TC 251, both representing the international standardization on health informatics, declared the deployment of ISO 23903:2021 mandatory for all their projects and standards addressing more than one domain. The paper summarizes and concludes the first author’s leading engagement in the evolution of pHealth in Europe and beyond over the last 15 years, discussing the concepts, principles, and standards for designing, implementing, and managing 5P medicine ecosystems. It not only introduces the theoretical foundations of the approach but also exemplifies its deployment in practical projects and solutions regarding interoperability and integration in multi-domain ecosystems. The presented approach enables comprehensive and consistent integration of and interoperability between domains, systems, related actors, specifications, standards, and solutions. That way, it should help overcome the problems and limitations of data-centric approaches, which still dominate projects and products nowadays, and replace them with knowledge-centric, comprehensive, and consistent ones

    Preface

    Get PDF

    What Can COVID-19 Teach Us about Using AI in Pandemics?

    Get PDF
    The COVID-19 pandemic put significant strain on societies and their resources, with the healthcare system and workers being particularly affected. Artificial Intelligence (AI) offers the unique possibility of improving the response to a pandemic as it emerges and evolves. Here, we utilize the WHO framework of a pandemic evolution to analyze the various AI applications. Specifically, we analyzed AI from the perspective of all five domains of the WHO pandemic response. To effectively review the current scattered literature, we organized a sample of relevant literature from various professional and popular resources. The article concludes with a consideration of AI\u27s weaknesses as key factors affecting AI in future pandemic preparedness and response
    • …
    corecore