233,534 research outputs found

    Parallelized Interactive Machine Learning on Autonomous Vehicles

    Full text link
    Deep reinforcement learning (deep RL) has achieved superior performance in complex sequential tasks by learning directly from image input. A deep neural network is used as a function approximator and requires no specific state information. However, one drawback of using only images as input is that this approach requires a prohibitively large amount of training time and data for the model to learn the state feature representation and approach reasonable performance. This is not feasible in real-world applications, especially when the data are expansive and training phase could introduce disasters that affect human safety. In this work, we use a human demonstration approach to speed up training for learning features and use the resulting pre-trained model to replace the neural network in the deep RL Deep Q-Network (DQN), followed by human interaction to further refine the model. We empirically evaluate our approach by using only a human demonstration model and modified DQN with human demonstration model included in the Microsoft AirSim car simulator. Our results show that (1) pre-training with human demonstration in a supervised learning approach is better and much faster at discovering features than DQN alone, (2) initializing the DQN with a pre-trained model provides a significant improvement in training time and performance even with limited human demonstration, and (3) providing the ability for humans to supply suggestions during DQN training can speed up the network's convergence on an optimal policy, as well as allow it to learn more complex policies that are harder to discover by random exploration.Comment: 6 pages, NAECON 2018 - IEEE National Aerospace and Electronics Conferenc

    Algorithms & Fiduciaries: Existing and Proposed Regulatory Approaches to Artificially Intelligent Financial Planners

    Get PDF
    Artificial intelligence is no longer solely in the realm of science fiction. Today, basic forms of machine learning algorithms are commonly used by a variety of companies. Also, advanced forms of machine learning are increasingly making their way into the consumer sphere and promise to optimize existing markets. For financial advising, machine learning algorithms promise to make advice available 24–7 and significantly reduce costs, thereby opening the market for financial advice to lower-income individuals. However, the use of machine learning algorithms also raises concerns. Among them, whether these machine learning algorithms can meet the existing fiduciary standard imposed on human financial advisers and how responsibility and liability should be partitioned when an autonomous algorithm falls short of the fiduciary standard and harms a client. After summarizing the applicable law regulating investment advisers and the current state of robo-advising, this Note evaluates whether robo-advisers can meet the fiduciary standard and proposes alternate liability schemes for dealing with increasingly sophisticated machine learning algorithms

    A Cyber-Physical System

    Get PDF
    The team was tasked with the creation of an autonomous cyber-physical system that could be continually developed as a post-capstone class by future STEM students and as a means to teach future engineering students. The strict definition of a cyber-physical system is a computation machine that networks with an embedded computer that performs a physical function. The autonomous aspect was achieved through two sonic sensors to monitor object distances in order to avoid walls and obstacles. The integrated system was based on the Intel Edison computation module. A primary goal for future addition is automation capabilities and machine learning applications
    • …
    corecore