2 research outputs found

    Autonomic log/restore for advanced optimistic simulation systems

    Get PDF
    In this paper we address state recoverability in optimistic simulation systems by presenting an autonomic log/restore architecture. Our proposal is unique in that it jointly provides the following features: (i) log/restore operations are carried out in a completely transparent manner to the application programmer, (ii) the simulation-object state can be scattered across dynamically allocated non-contiguous memory chunks, (iii) two differentiated operating modes, incremental vs non-incremental, coexist via transparent, optimized run-time management of dual versions of the same application layer, with dynamic selection of the best suited operating mode in different phases of the optimistic simulation run, and (iv) determinationof the best suited mode for any time frame is carried out on the basis of an innovative modeling/optimization approach that takes into account stability of each operating mode vs variations of the model execution parameters. © 2010 IEEE

    A load-sharing architecture for high performance optimistic simulations on multi-core machines

    Get PDF
    In Parallel Discrete Event Simulation (PDES), the simulation model is partitioned into a set of distinct Logical Processes (LPs) which are allowed to concurrently execute simulation events. In this work we present an innovative approach to load-sharing on multi-core/multiprocessor machines, targeted at the optimistic PDES paradigm, where LPs are speculatively allowed to process simulation events with no preventive verification of causal consistency, and actual consistency violations (if any) are recovered via rollback techniques. In our approach, each simulation kernel instance, in charge of hosting and executing a specific set of LPs, runs a set of worker threads, which can be dynamically activated/deactivated on the basis of a distributed algorithm. The latter relies in turn on an analytical model that provides indications on how to reassign processor/core usage across the kernels in order to handle the simulation workload as efficiently as possible. We also present a real implementation of our load-sharing architecture within the ROme OpTimistic Simulator (ROOT-Sim), namely an open-source C-based simulation platform implemented according to the PDES paradigm and the optimistic synchronization approach. Experimental results for an assessment of the validity of our proposal are presented as well
    corecore