79,616 research outputs found
Automaton semigroups: new construction results and examples of non-automaton semigroups
This paper studies the class of automaton semigroups from two perspectives:
closure under constructions, and examples of semigroups that are not automaton
semigroups. We prove that (semigroup) free products of finite semigroups always
arise as automaton semigroups, and that the class of automaton monoids is
closed under forming wreath products with finite monoids. We also consider
closure under certain kinds of Rees matrix constructions, strong semilattices,
and small extensions. Finally, we prove that no subsemigroup of arises as an automaton semigroup. (Previously, itself was
the unique example of a finitely generated residually finite semigroup that was
known not to arise as an automaton semigroup.)Comment: 27 pages, 6 figures; substantially revise
Truly On-The-Fly LTL Model Checking
We propose a novel algorithm for automata-based LTL model checking that
interleaves the construction of the generalized B\"{u}chi automaton for the
negation of the formula and the emptiness check. Our algorithm first converts
the LTL formula into a linear weak alternating automaton; configurations of the
alternating automaton correspond to the locations of a generalized B\"{u}chi
automaton, and a variant of Tarjan's algorithm is used to decide the existence
of an accepting run of the product of the transition system and the automaton.
Because we avoid an explicit construction of the B\"{u}chi automaton, our
approach can yield significant improvements in runtime and memory, for large
LTL formulas. The algorithm has been implemented within the SPIN model checker,
and we present experimental results for some benchmark examples
Reducing Clocks in Timed Automata while Preserving Bisimulation
Model checking timed automata becomes increasingly complex with the increase
in the number of clocks. Hence it is desirable that one constructs an automaton
with the minimum number of clocks possible. The problem of checking whether
there exists a timed automaton with a smaller number of clocks such that the
timed language accepted by the original automaton is preserved is known to be
undecidable. In this paper, we give a construction, which for any given timed
automaton produces a timed bisimilar automaton with the least number of clocks.
Further, we show that such an automaton with the minimum possible number of
clocks can be constructed in time that is doubly exponential in the number of
clocks of the original automaton.Comment: 28 pages including reference, 8 figures, full version of paper
accepted in CONCUR 201
Damaging 2D Quantum Gravity
We investigate numerically the behaviour of damage spreading in a Kauffman
cellular automaton with quenched rules on a dynamical graph, which is
equivalent to coupling the model to discretized 2D gravity. The model is
interesting from the cellular automaton point of view as it lies midway between
a fully quenched automaton with fixed rules and fixed connectivity and a
(soluble) fully annealed automaton with varying rules and varying connectivity.
In addition, we simulate the automaton on a fixed graph coming from a
2D gravity simulation as a means of exploring the graph geometry.Comment: 6 pages, COLO-HEP-332;LPTHE-Orsay-93-5
Subsequence Automata with Default Transitions
Let be a string of length with characters from an alphabet of size
. The \emph{subsequence automaton} of (often called the
\emph{directed acyclic subsequence graph}) is the minimal deterministic finite
automaton accepting all subsequences of . A straightforward construction
shows that the size (number of states and transitions) of the subsequence
automaton is and that this bound is asymptotically optimal.
In this paper, we consider subsequence automata with \emph{default
transitions}, that is, special transitions to be taken only if none of the
regular transitions match the current character, and which do not consume the
current character. We show that with default transitions, much smaller
subsequence automata are possible, and provide a full trade-off between the
size of the automaton and the \emph{delay}, i.e., the maximum number of
consecutive default transitions followed before consuming a character.
Specifically, given any integer parameter , , we
present a subsequence automaton with default transitions of size
and delay . Hence, with we
obtain an automaton of size and delay . On
the other extreme, with , we obtain an automaton of size and delay , thus matching the bound for the standard subsequence
automaton construction. Finally, we generalize the result to multiple strings.
The key component of our result is a novel hierarchical automata construction
of independent interest.Comment: Corrected typo
Graph Spectral Properties of Deterministic Finite Automata
We prove that a minimal automaton has a minimal adjacency matrix rank and a
minimal adjacency matrix nullity using equitable partition (from graph spectra
theory) and Nerode partition (from automata theory). This result naturally
introduces the notion of matrix rank into a regular language L, the minimal
adjacency matrix rank of a deterministic automaton that recognises L. We then
define and focus on rank-one languages: the class of languages for which the
rank of minimal automaton is one. We also define the expanded canonical
automaton of a rank-one language.Comment: This paper has been accepted at the following conference: 18th
International Conference on Developments in Language Theory (DLT 2014),
August 26 - 29, 2014, Ekaterinburg, Russi
- …
