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Abstract

This paper studies the class of automaton semigroups from two per-
spectives: closure under constructions, and examples of semigroups that
are not automaton semigroups. We prove that (semigroup) free products
of finite semigroups always arise as automaton semigroups, and that the
class of automaton monoids is closed under forming wreath products with
finite monoids. We also consider closure under certain kinds of Rees ma-
trix constructions, strong semilattices, and small extensions. Finally, we
prove that no subsemigroup of (N,+) arises as an automaton semigroup.
(Previously, (N,+) itself was the unique example of a finitely generated
residually finite semigroup that was known not to arise as an automaton
semigroup.)

1 Introduction

Automaton semigroups (that is, semigroups of endomorphisms of rooted trees
generated the actions of Mealy automata) emerged as a generalisation of au-
tomaton groups, which arose from the construction of groups having ‘exotic’
properties, such as the finitely generated infinite torsion group found by Grigorčuk
[10], and later proven to have intermediate growth, again by Grigorchuk [8]. The
topic of automaton groups has since developed into a substantial theory; See,
for example, Nekrashevych’s monograph [18] or one of the surveys by the school
led by Bartholdi, Grigorchuk, Nekrashevych, and Šunić [1, 2, 7].

After the foundational work of Grigorchuk, Nekrashevych & Sushchanskii [9,
esp. Sec. 4 & Subsec. 7.2], the theory of automaton semigroups has grown into
an active research topic. Broadly speaking, there have been two foci of research.
First, the study of decision problems: what can be effectively decided about
the semigroup generated by a given automaton? For example, the finiteness
and torsion problems are now known to be undecidable for general automaton
semigroups [6], but particular special cases are decidable [14, 13, 16]. Second,
the study of the class of automaton semigroups: which semigroups arise and do
not arise as automaton semigroups? Two particular aspects of this question are
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whether the class of automaton semigroups is closed under various semigroup
constructions, and giving examples of semigroups that do not arise as automaton
semigroups. This paper is concerned with both of these aspects.

For some constructions, such as direct products and adjoining a zero or identity,
it is straightforward to prove that the class is closed; see [4, Section 5]. For
many other natural constructions, the question of closure remains open. For
example, whether automaton semigroups are closed under free products is an
open question. (This is related to the problem of showing that all free groups
arise as automaton groups; the recent positive answer to this question was the
culmination of the work a series of authors; see [22] and the references therein.)
The free product of automaton semigroups is, however, at least very close to
being an automaton semigroup: in a previous paper, we showed that (S ? T )1

is always an automaton semigroup if S and T are [3, Theorem 3].

Since closure under free products seemed difficult to settle, the second author
asked whether free products of finite semigroups always arise as automaton
semigroups [4, Open problem 5.8(1)]. In [3, Conjecture 5], we conjectured that
the answer was ‘no’, and suggested a potential counterexample. However, in
this paper we prove that the answer is ‘yes’: free products of finite semigroups
always arise as automaton semigroups (Theorem 2). This parallels the result
that (group) free products of finite groups arise as automaton groups [11]. More
generally, we show in Theorem 3 that the free product of automaton semigroups
each containing an idempotent is always an automaton semigroup.

In our previous paper, we also considered whether a wreath product S o T ,
where S is an automaton monoid and T is a finite monoid, was necessarily an
automaton monoid. We managed to prove that such a wreath product arises
as a submonoid of an automaton monoid. In this paper, we obtain a complete
answer: all such wreath products arise as automaton monoids (Theorem 5).

We consider whether a Rees matrix semigroup over an automaton semigroup is
also an automaton semigroup. We do not have a complete answer, but we prove
that this holds under certain restrictions (Proposition 6). This is a step towards
classifying completely simple automaton semigroups [4, Open problem 5.8(3)].

We prove that a certain kind of strong semilattice of automaton semigroups is
itself an automaton semigroup (Proposition 8). This result is then applied when
we turn to the question of whether a small extension of an automaton semigroup
is necessarily an automaton semigroup. (Recall that if S is a semigroup and T is
a subsemigroup of S with S \T finite, then S is a small extension of T and T is a
large subsemigroup of S.) Many finiteness properties are known to be preserved
on passing to large subsemigroups and small extensions; see the survey [5]. It
is already known that a large subsemigroup of an automaton semigroup is not
necessarily an automaton semigroup, for (N∪{0},+) is an automaton semigroup
but (N,+) is not; see [4, Section 5]. We do not have a complete answer, but we
prove some special cases in Section 7. The importance of these results is that if
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the class of automaton semigroups is not closed under forming small extensions,
then we have eliminated several standard constructions as potential sources of
counterexamples.

In all of the automaton constructions in this paper, we use alphabets of symbols
consisting at least partially of tuples of symbols from the automata for the ‘base’
semigroups of the construction. This seems to be quite a powerful approach, as
it allows the automaton to have access to a lot of information at each transition.

Finally, we present new examples of semigroups that do not arise as automa-
ton semigroups. This is an important advance, because a major difficulty in
studying the class of automaton semigroup is that if a semigroup has the prop-
erties that automaton semigroups have generally, such as residual finiteness [4,
Proposition 3.2], then there are no general techniques for proving it is not an
automaton semigroup. In the pre-existing literature, there is a unique example
of a residually finite semigroup that is known not to arise as an automaton
semigroup: namely, the free semigroup of rank 1 (or, if one prefers, (N,+)) [4,
Proposition 4.3]. We prove that no subsemigroup of this semigroup arises as
an automaton semigroup (Theorem 15). Although our proof is specialised, and
thus still leaves open the problem of finding a general technique for proving that
a semigroup is not an automaton semigroup, we at least now have a countable,
rather than singleton, class of non-automaton semigroups.

2 Preliminaries

In this section we briefly recall the necessary definitions and concepts required
in the rest of the paper. For a fuller introduction to automaton semigroups, see
the discussion and examples in [4, Sect. 2].

An automaton A is formally a triple (Q,B, δ), where Q is a finite set of states,
B is a finite alphabet of symbols, and δ is a transformation of the set Q × B.
The automaton A is normally viewed as a directed labelled graph with vertex
set Q and an edge from q to r labelled by x | y when (q, x)δ = (r, y):

q r
x | y

The interpretation of this is that if the automaton A is in state q and reads
symbol x, then it changes to the state r and outputs the symbol y. Thus, starting
in some state q0, the automaton can read a sequence of symbols α1α2 . . . αn and
output a sequence β1β2 . . . βn, where (qi−1, αi)δ = (qi, βi) for all i = 1, . . . , n.

Such automata are more usually known in computer science as deterministic
real-time (synchronous) transducers, or Mealy machines. In the field of au-
tomaton semigroups and groups, they are simply called ‘automata’ and this
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Figure 1: The set {0, 1}∗ viewed as a rooted binary tree.

paper retains this terminology.

Each state q ∈ Q acts on B∗, the set of finite sequences of elements of B. The
action of q ∈ Q on B∗ is defined as follows: α · q (the result of q acting on α)
is defined to be the sequence the automaton outputs when it starts in the state
q and reads the sequence α. That is, if α = α1α2 . . . αn (where αi ∈ B), then
α · q is the sequence β1β2 . . . βn (where βi ∈ B), where (qi−1, αi)δ = (qi, βi) for
all i = 1, . . . , n, with q0 = q.

The set B∗ can be identified with an ordered regular tree of degree |B|. The
vertices of this tree are labelled by the elements of B∗. The root vertex is labelled
with the empty word ε, and a vertex labelled α (where α ∈ B∗) has |B| children
whose labels are αβ for each β ∈ B. It is convenient not to distinguish between
a vertex and its label, and thus one normally refers to ‘the vertex α’ rather
than ‘the vertex labelled by α’. (Figure 1 illustrates the tree corresponding to
{0, 1}∗.)

The action of a state q on B∗ can thus be viewed as a transformation of the
corresponding tree, sending the vertex w to the vertex w · q. Notice that, by the
definition of the action of q, if αα′ · q = ββ′ (where α, β ∈ B∗ and α′, β′ ∈ B),
then α · q = β. In terms of the transformation on the tree, this says that
if one vertex (α) is the parent of another (αα′), then their images under the
action by q are also parent (β) and child (ββ′) vertices. More concisely, the
action of q on the tree preserves adjacency and is thus an endomorphism of the
tree. Furthermore, the action’s preservation of lengths of sequences becomes a
preservation of levels in the tree.

The actions of states extends naturally to actions of words: w = w1 · · ·wn

(where wi ∈ Q) acts on α ∈ B∗ by

(· · · ((α · w1) · w2) · · ·wn−1) · wn.

So there is a natural homomorphism φ : Q+ → EndB∗, where EndB∗ denotes
the endomorphism semigroup of the tree B∗. The image of φ in EndB∗, which
is necessarily a semigroup, is denoted Σ(A).
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A semigroup S is called an automaton semigroup if there exists an automaton
A such that S ' Σ(A).

It is often more convenient to reason about the action of a state or word on
a single sequence of infinite length than on sequences of some arbitrary fixed
length. The set of infinite sequences over B is denoted Bω. The infinite sequence
consisting of countably many repetitions of the finite word α ∈ B∗ is denoted
αω. For synchronous automata, the action on infinite sequences determines the
action on finite sequences and vice versa.

The following lemma summarises the conditions under which two words w and
w′ in Q+ represent the same element of the automaton semigroup. The re-
sults follow immediately from the definitions, but are so fundamental that they
deserve explicit statement:

Lemma 1. Let w,w′ ∈ Q+. Then the following are equivalent:

(i) w and w′ represent the same element of Σ(A);

(ii) wφ = w′φ;

(iii) α · w = α · w′ for each α ∈ B∗;

(iv) w and w′ have the same actions on Bn for every n ∈ N0;

(v) w and w′ have the same actions on Bω.

Generally, there is no need to make a notational distinction between w and
wφ. Thus w denotes both an element of Q+ and the image of this word in
Σ(A). In particular, one writes ‘w = w′ in Σ(A)’ instead of the strictly correct
‘wφ = w′φ’. With this convention, notice that Q generates Σ(A).

Some further notation is required for the rest of the paper: For w ∈ Q+, define
τw : B → B by b 7→ b·w. For b ∈ B, define πb : Q → Q by q 7→ r if (q, b)δ = (r, x)
for some x ∈ B (in fact, x = bτq). So qπb is the state to which the edge from q
labelled by b | · leads. Thus (q, b)δ = (qπb, bτq).

Further, let w ∈ Q+. For any α ∈ B∗, there is a unique w|α ∈ EndB∗ such
that αβ · w = (α · w)(β · w|α); see [18] for details. Notice that w,w′ ∈ Q+ are
equal in Σ(A) if and only if w|α = w′|α for all α ∈ B∗.

We now recall the notion of wreath recursions. The endomorphism semigroup
of B∗ decomposes as a recursive wreath product:

EndB∗ = EndB∗ o TB ,

where TB is the transformation semigroup of the set B. That is,

EndB∗ =
(
EndB∗ × . . .× EndB∗︸ ︷︷ ︸

|B| times

)
o TB
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where TB acts from the right on the co-ordinates of elements of the direct prod-
uct of n copies of EndB∗. Hence, if p, q ∈ EndB∗ with p = (x0, x1, . . . , xn−1)τ
and q = (y0, y1, . . . , yn−1)ρ, where τ, ρ ∈ TB and xi, yj ∈ EndB∗, then

pq = (x0y0τ , x1y1τ , . . . , xn−1y(n−1)τ )τρ. (1)

If p ∈ EndB∗ with p = (x0, x1, . . . , xn−1)τ , then τ describes the action of p on
B and each xi is an element of EndB∗ whose action on B∗ mirrors the action
of p on the subtree biB

∗. Alternatively: to act on B∗ by p, act on each subtree
biB

∗ by xi, and then act on the collection of the resulting subtrees according to
τ .

If p ∈ Q, then τ = τp and xi = pπi. That is,

p = (pπ1, pπ2, . . . , pπn−1)τp.

This description of the action of p is called a wreath recursion. Its primary use
is to calculate, by means of the multiplication given in (1), the action of a word
w ∈ Q+ on B∗.

3 Free products

The free product of two semigroups S = sgp〈X1 | R1〉 and T = sgp〈X2 | R2〉,
denoted S ? T , is the semigroup with presentation sgp〈X1 ∪X2 | R1 ∪R2〉.

In [3, Conjecture 5], the present authors conjectured that there exist finite
semigroups S and T such that S ? T is not an automaton semigroup. We begin
by showing that this is not the case.

Theorem 2. Let S and T be finite semigroups. Then S ? T is an automaton
semigroup.

Proof. Let e and f be distinguished idempotents of S and T respectively. Let
A = (Q,C, δ) with Q = Q1 ∪Q2, where Q1 is a copy of S and Q2 is a copy of
T . Define an alphabet

B =
{

, s , s t , s t
◦
, , t , t s , t s

◦ | s ∈ S, t ∈ T
}
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and let δ be the transformation of Q×B given by the following transition table.

s t

(f, s ) (f, )

a (f, as ) (f, a t )

a b (s, a b
◦
) (f, a bt )

a b
◦

(s, a b
◦
) (t, a b

◦
)

(e, ) (e, t )

b (e, b s ) (e, bt )

b a (e, b as ) (t, b a
◦
)

b a
◦

(s, b a
◦
) (t, b a

◦
)

for s ∈ Q1, t ∈ Q2, a ∈ S and b ∈ T , where as and bt denote elements of S and
T respectively rather than two-letter words.

We will refer to -symbols and -symbols, meaning all symbols having those
shapes. Actions on strings of -symbols will help us distinguish words begin-
ning with an element of S, while actions on strings of -symbols help us
distinguish words begining with and element of T . We call a symbol full if it
has entries in both boxes, open if not, and marked if it has the ◦ superscript.
Notice that all states ‘ignore’ marked symbols: that is, if x◦ is a marked symbol,
then (q, x)δ = (q, x) for all q ∈ Q.

We begin by showing that A defines actions of S and T , and hence of S ? T , on
B∗. Firstly, we consider only the states e and f , whose actions are illustrated
in Figure 2. These states are of particular significance, as it can be seen from
the definition of δ that all transitions lead either back to the state they started
from or to one of e or f .

The state e has no effect on marked symbols or the symbol , marks any full
-symbol, and multiplies the second entry of non-empty -symbols by e (or

inserts e if it is blank) – returning to state e on all of these actions – while on
open -symbols it multiplies the first entry by e (or inserts e if it is blank)
and moves to f . The action of f can be described by switching the roles of e
and f and of -symbols and -symbols in the preceding sentence.

Let Be = B \ { , a : a ∈ S} and Bf = B \ { , b : b ∈ T}.
The above discussion and the fact that e and f are idempotents in S and T
respectively implies that e and f act as idempotents on B∗

e and B∗
f respectively.

To see how e acts on a string in B∗, the important symbols to take note of are
the -symbol with empty second component, then the next -symbol with
empty second component, and so on alternatingly, since these are the symbols
that will cause the automaton to change state. So we write each string as a
prefix of some alternating product of strings in Be and Bf , distinguishing the

7



e f

∣∣∣ e

a

∣∣∣ ae

∣∣∣ f

b

∣∣∣ bf

a b

∣∣∣ a b
◦

a b
◦
∣∣∣ a b

◦∣∣∣
b

∣∣∣ b e

b a

∣∣∣ b ae

b a
◦
∣∣∣ b a

◦

b a

∣∣∣ b a
◦

b a
◦
∣∣∣ b a

◦∣∣∣
a

∣∣∣ a f

a b

∣∣∣ a bf

a b
◦
∣∣∣ a b

◦

Figure 2: Actions of e and f .

important symbols, as follows (where ai or bi may denote empty space):

α1 a1 β1 b1 . . . αi ai βi bi . . . ∈ Bω,

where αi ∈ B∗
e and βi ∈ B∗

f . Then

α1 a1 β1 b1 . . . αi ai βi bi . . . · e
=(α1 · e) a1e (β1 · f) b1f . . . (αi · e) aie (βi · f) bif . . . .

(If, for example, ai denotes an empty space, then aie = e.) Acting on the
resulting string by e again has the result of replacing each e and f by e2 and f2

respectively, but since we already know that e acts idempotently on S and B∗
e ,

while f acts idempotently on T and B∗
f , this makes no change. Hence e2 = e in

Σ(A). Similarly, to show that f2 = f in Σ(A), we would express strings in B∗

in the form β1 b1 α1 a1 . . ..

We can now describe the action of Q1 on B∗. Each state in Q1 recurses to itself
on marked symbols (which it leaves unchanged) and on full -symbols (which
it marks); to e on unmarked -symbols; and to f on open -symbols. Let
C be the set of marked symbols and full -symbols in B, and for α ∈ C∗, let
α◦ denote the word obtained from α by marking all unmarked symbols. We can
express any string in B∗ in the form αβγ, where α ∈ C∗, β ∈ B \ C, γ ∈ B∗.
Let s1, . . . , sn ∈ S. Since the type ( or ) of the symbol β is not changed
by the action of any state, and also β · s /∈ C for any s ∈ S, we have for some
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ε ∈ {e, f}

αβγ · s1 . . . sk = [α◦(β · s1)(γ · ε)] · s2 . . . sn
= . . . = α◦(β · s1 . . . sn)(γ · εn)
= α◦(β · s1 . . . sn)(γ · ε),

Thus the action of 〈Q1〉 onB∗ depends only on its action onB\C. (Note that the
idempotency of e and f is critical in establishing this.) Let w = s1 . . . sn ∈ Q+

1

and let sw be the element of S represented by w. Then

· w = sw

a · w = asw

· w =

b · w = b sw

b a · w = b asw .

This shows that the action of w on B∗ depends only on sw ∈ S, so that 〈Q1〉
must be isomorphic to some quotient of S.

By symmetry of the construction, we also find that 〈Q2〉 is isomorphic to some
quotient of T , and so A defines an action of S ? T on B∗.

It remains to prove that this action is faithful. We have already seen that
the actions of words in Q+

1 and Q+
2 depend only on the elements of S and T

respectively that they represent, so it suffices to consider the action of reduced
words. The idea of this automaton is that the action on the string ω can
be used to recover any reduced word in S ? T starting with an element of S,
while ω is used to recover reduced words starting with elements of T . Given
a word s1t1 . . . sktk with si ∈ S, ti ∈ T , we have

ω · s1t1 . . . sktk = s1
ω · t1s2 . . . sktk

= s1 t1
ω · s2t2 . . . sktk

= s1 t1
◦

s2 t2
ω · s3t3 . . . sktk

= s1 t1
◦

s2 t2
◦
. . . sk−1 tk−1

◦
sk tk .

If the final tk is not present, the resulting final symbol will instead be sk .
Thus we can read off any reduced word w starting with an element from S from
the string ω · w. Similarly, if w is a reduced word starting with an element
from T , we can read it off from the string ω · w. Meanwhile,

ω · t1s1 . . . tksk = s1 t2
◦
. . . sk−1 tk

◦
sk ,

ω · s1t1 . . . sktk = t1 s1
◦
. . . tk−1 sk

◦
tk .

Hence pairs of distinct elements of S ? T can be distinguished by their actions
on one of ω or ω, and so Σ(A) ∼= S ? T .
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We can in fact considerably generalise the above construction: the important
point is the existence of idempotents in the factor semigroups. The following
theorem generalises [3, Theorem 2], which says that the free product of automa-
ton semigroups S and T is an automaton semigroup if S and T each contain a
left identity.

Theorem 3. Let S and T be automaton semigroups each containing at least
one idempotent. Then S ? T is an automaton semigroup.

This is immediate from the following more technical theorem.

Theorem 4. Let S1 and S2 be automaton semigroups and suppose that there

exist ei ∈ Si such that if w =Si w
′, then e

|w|
i = e

|w′|
i for i = 1, 2. Then S1 ? S2

is an automaton semigroup.

Proof. Let e and f be distinguished elements of S and T respectively satisfying
the hypothesis of the theorem. (For example, e and f might be idempotents.)
Let A1 = (Q1, A, δ1) and A2 = (Q2, B, δ2) be automata for S and T respectively.
We may assume that e ∈ Q1 and f ∈ Q2. LetX = { a b , b a | a ∈ A, b ∈ B}
and Y = {$,#}. We shall call the symbols in X dominoes and the symbols in
Y gates. We construct an automaton A = (Q,C, δ) with Q = Q1 ∪Q2,

C = {x, xS , xT , x◦, y, ŷ, y | x ∈ X, y ∈ Y }

and δ the transformation of Q×C defined as follows. For s ∈ Q1, t ∈ Q2, a ∈ A,
b ∈ B suppose that (s, a)δ1 = (s0, a0) and (t, b)δ2 = (t0, b0). Then the action of
Q on -symbols and $-gates is given by

s t

a b (s0, a0 b
S
) (t, a b )

a b
S

(s0, a0 b
S
) (t0, a b0

T
)

a b
T

(s, a b
◦
) (t0, a b0

T
)

a b
◦

(s, a b
◦
) (t, a b

◦
)

$ (f, $) (f, $̂)

$̂ (s, $) (f, $̂)

$ (s, $) (t, $)

The action of Q on the remainder of C ( -symbols and #-gates) is given by re-
placing each i j in the above table by j i and swapping the corresponding
symbols in the tuples (S, s, s0, f, $) and (T, t, t0, e,#).

For x ∈ X and y ∈ Y , we call x unmarked, xS S-marked, xT T -marked, x◦

circled, y open, ŷ half-open and y closed.
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This construction is inspired by the construction in Theorem 2. Since single
symbols are no longer sufficient for distinguishing elements of S and of T , we
instead use strings of several - or -symbols, separated by either $-gates
or #-gates.

We first describe the action of a word in Q1Q
+ on a string consisting only of

unmarked -symbols and closed $-gates. Let w = u1v1 . . . ukvk with ui ∈ Q+
1

and vi ∈ Q+
2 and let α = α1$α2 . . . $αk with each αi consisting only of unmarked

-symbols (note that αi may be empty). Then u1 acts on α by acting on
the first entries of α1 just as in A1, S-marking the resulting -symbols and
leaving the rest of the string unchanged. Next, v1 acts on α · u1 by acting on
the second entries of α1 ·u1 just as in A2, T -marking the resulting -symbols,
half-opening the first $-gate, and leaving the rest of the string unchanged. Now
α · u1v1 begins with a string of T -marked -symbols, followed by a half-open
$-gate. The first state in u2 circles the initial string of -symbols and opens
the $-gate, all the while not changing state. By induction, we have

α · w = (α1 · u1v1)
◦$(α2 · u2v2)

◦$ . . . $(αk · ukvk).

(All dominoes up until the last $-gate are circled.) Thus if w′ = u′
1v

′
1 . . . u

′
kv

′
k is

another word with u′
i ∈ Q+

1 and v′i ∈ Q+
2 and some u′

i 6=S ui, we can distinguish

w and w′ as follows. Let γ = $
i−1

β, where β is some string of -symbols such
that reading off the first entries of β gives a word which ui and u′

i act differently
on. Then

γ · w = $i−1(β · ui)
◦ 6= $i−1(β · u′

i)
◦ = γ · w′.

If instead some vi 6=T v′i, then the same idea using second entries instead of first
entries for β works. Words in Q1Q

+ representing elements of S ? T of different
reduced lengths can be distinguished by their actions on the string $

ω
. (The

reduced length of an element s ∈ S ? T is the length of an alternating product
of elements of S and T representing s.)

Words in Q2Q
+ have an analogous action to the one described above on strings

consisting only of unmarked -symbols and closed #-gates, and can thus be
distinguished similarly. Two words not starting with symbols from the same Qi

can be distinguished their actions on either $
ω
or #

ω
(usually both).

It remains to show that A defines an action of S?T on C∗. For this, it suffices to
show that the action of Q+

1 gives an action of S, since it will follow by symmetry
of the construction that the action of Q+

2 gives an action of T .

Let w ∈ Q+
1 and α ∈ C∗. For clarity, we explain the action of w on α by a series

of observations.

(i) When acting on C∗ by Q+
1 , certain symbols are ‘uninteresting’, in the

sense that the same thing happens to them when acted on by any word
in Q+

1 , and they also do not affect what happens to the rest of the string
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containing them. All circled symbols are uninteresting, as are $, $̂,#,
unmarked -symbols and T -marked -symbols. We may thus assume
that α contains none of these symbols; that is, that

α ∈ {$,#, #̂, a b , a b
S
, a b

T
, a b

S | a ∈ A, b ∈ B}∗.

(ii) Furthermore, under actions of Q+
1 , the following pairs of symbols are es-

sentially the same: (#, #̂), ( a b , a b
S
) and ( b a

T
, b a

S
). This is

because the action of Q1 on the two symbols in each pair is identical. In
each case, the output from both symbols is a symbol of the second type,
and the symbols of the first type do not occur in C∗ · Q+

1 . We may thus
assume that

α ∈ {$, #̂, a b
S
, b a

S | a ∈ A, b ∈ B}∗.

(iii) For β consisting only of S-marked dominoes, then let βA ∈ A∗ be the
word obtained from β by reading off the symbols from A in each domino
(which will be the first entry for -symbols and the second entry for

-symbols). Then (β · w)A = βA · w, where the action of w is in A
on the left-hand side and in A1 on the right-hand side. If we define βB

similarly, then (β · w)B = βB . Hence Q+
1 defines an action of S on S-

marked dominoes.
Moreover, note that for v ∈ Q+

2 we have (β ·v)A = βA and (β ·v)B = βB ·v.

(iv) In general, α can be assumed to be a prefix of some γ = α1y1α2y2 . . . αkyk,
where each αi is a string of S-marked dominoes and each yi is a gate. If
w has length n, then

γ · w = (α1 · w)y1(α2 · gn2 )y2 . . . (αk · gnk ),

where gi is e if yi−1 = #̂ and f if yi−1 = $. By (iii) and the hypothesis
on e and f , the string α1 ·w and each αi · gni depend only on the element
of S represented by w. Hence we have α · w = α · w′ whenever w =S w′,
for w,w′ ∈ Q+

1 and α ∈ C∗.

Thus A defines a faithful action of S ? T on C∗ and so S ? T is an automaton
semigroup.

Aside from S and T containing idempotents, another way to satisfy the hy-
pothesis of Theorem 4 is for S and T to be homogeneous, meaning that any
two words representing the same element have the same length. (In this case
e and f can be taken to be arbitrary elements of S and T respectively.) Free
semigroups and free commutative semigroups of course have this property. A
less trivial example is the plactic monoid (see, for example, [15, Ch. 5], which
Picantin has recently shown to be an automaton semigroup [19].
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The question of whether the class of automaton semigroups is closed under
taking free products remains open. It is even possible that the condition in
Theorem 4 is necessary. Unlike [3, Theorem 2], Theorem 4 does account (by
induction) for the free semigroups and free monoids that can be constructed as
free products of automaton semigroups (i.e. free semigroups of rank at least 4
and free monoids of rank at least 2).

4 Wreath products

The wreath product of two automaton semigroups is certainly not always an
automaton semigroup, since it need not even be finitely generated. One way to
ensure that a wreath product S oT is finitely generated is to require S and T to
be monoids, with T finite. For monoids S and T with T = {t1, . . . , tn} finite,
the wreath product S o T of S with T is a semidirect product S|T | o T , where T
acts on elements of S|T | by (st1 , st2 , . . . , stn)

t = (st1t, st2t, . . . , stnt).

It turns out, contrary to [3, Conjecture 6], that the wreath product of an au-
tomaton monoid and a finite monoid is always an automaton monoid.

Theorem 5. Let S be an automaton monoid and T a finite monoid. Then S oT
is an automaton monoid.

Proof. First observe that S|T | (the direct product of |T | copies of S) is an
automaton semigroup by [4, Proposition 5.5], and let A = (Q,A, δ) be the
standard automaton for S|T |, which has Q = P |T | (the Cartesian product of |T |
copies of P ) for some generating set P of S.

We construct an automaton B = (Q′, C, δ′) with Σ(B) = S oT . Let Q′ = Q×T ,
C = A×B, where B is a copy of T , and let δ′ : Q′ × C → Q′ × C be given by:

((s, t), (a, b)) 7→
(
(sbπa, 1T ), (aτsb , bt)

)
,

for s ∈ Q, t ∈ T , a ∈ A, b ∈ B, and πa, τsb are as in A. Note that after reading
the first symbol in any α ∈ C∗, the automaton B only utilises the states of the
form (s, 1T ), which act like s on the first component of symbols in C and leave
the second components unchanged. (See the example in Figure 3.)

The ‘ideal’ strings in C∗, which we use to distinguish elements of S oT , are those
from D = (A× T )(A× {1T })∗. For strings in D, we will simplify the notation
by writing (a1, b1)(a2, 1T ) . . . (an, 1T ) as (a1a2 . . . an, b1). We have

(α, 1T ) · (s1, t1)(s2, t2) . . . (sm, tm) = (α · s1, t1) · (s2, t2) . . . (sm, tm)

= (α · s1st12 , t1t2) · (s3, t3) . . . (sm, tm)

= (α · s1st12 st1t23 . . . st1t2...tmm , t1t2 . . . tm).

13



a b∗|∗ 0|0
1|0

(
(a, a), 1

) (
(a, b), 1

)

(
(b, a), 1

) (
(b, b), 1

)

(
(a, a), c

) (
(a, b), c

)

(
(b, a), c

) (
(b, b), c

)

∗|∗
00e|00e
10e|10e

00e|00e
01e|01e

00e|00e
00c|00c

01e|00e
10c|00c
11e|10e
11c|01c

00c|00c
01c|01c

10e|00e
01c|00c
11e|01e
11c|10c

00c|00c
10c|10c 11e|00e

11c|00c

10e|00e
10c|00c

01e|00e
01c|00c

κλe|κλc

κλc|κλe

01e|00c 10c|00e
11e|10c 11c|01e

00e|00c
10e|10c

00c|00e
01c|01e

00c|00e
10c|10e

01c|00e 10e|00c
11e|01c 11c|01e

00e|00c
01e|01c

00e|00c
00c|00e

11e|00c
11c|00e

10e|00c
10c|00e

01e|00c
01c|00e

Figure 3: Automaton for the wreath product N0oC2, where C2 is the cyclic group
of order 2, with element set {e, c}. For reasons of space, symbols

(
(κ, λ), µ

)
are

abbreviated κλµ; thus
(
(1, 0), c

)
is shown as 10c. At the top of the diagram, in

the grey box, is the original automaton for N0.
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Since we already know that A gives a faithful action of S|T | on A∗, this shows
that B gives a faithful action of S o T on D∗. (Acting on (α, b) with b 6= 1T
simply has the effect of premultiplying all the elements from T by b.) Hence any
two words in (Q′)∗ representing different elements of S o T can be distinguished
by their actions on some word in D ⊂ C∗.

It is less obvious that B defines an action of S o T on the remainder of C∗. To
see that it does, we view words in C∗ as a concatenation of words in D, and
then for w ∈ (Q′)+ we have:

(α1, b1)(α2, b2) . . . (αk, bk) · w
= [(α1, b1) · w] [(α2, b2) · (w2, 1T )] . . . [(αk, bk) · (wk, 1T )]

for some elements wj ∈ S. But w2 is determined uniquely by (α1, b1) and the
element of S o T represented by w, and then each wj is determined recursively
by all the (αi, bi) and wi for i < j (setting w0 = w), so that ultimately all the
wj are determined uniquely by the string (α1, b1) . . . (αk, bk) and the element
represented by w. Hence B does indeed define an action of S o T on C∗, and so
S o T = Σ(B).

5 Rees matrix semigroups

Let us recall the definition of a Rees matrix semigroup. Let M be a monoid, let
I and Λ be abstract index sets, and let P ∈ MatΛ×I(M) (that is, P is a Λ× I
matrix with entries from M). Denote the (λ, i)-th entry of P by pλi. The Rees
matrix semigroup over M with sandwich matrix P , denoted M[M ; I,Λ;P ], is
the set I ×M × Λ with multiplication defined by

(i, x, λ)(j, y, µ) = (i, xpλjy, µ).

The Rees matrix semigroup construction is particularly important because it
arises in the classification of completely simple semigroups; see [12, Sect. 3.2–3.3]
for background reading.

Proposition 6. Let S be a Rees matrix semigroup M[M ; I,Λ;P ) with I and Λ
finite and M an automaton monoid. and P ∈ MatΛ×I(M) a matrix containing
the identity element of M in some position. If there exists an automaton for M
with state set Q such that 1M ∈ Q and Q is closed under left-multiplication by
each non-zero entry of the matrix P , then S is an automaton monoid.

[Note that if P consists only of ones and zeros, then the hypothesis on Q is
always satisfied.]

Proof. Let A = (Q,A, δ) be an automaton with Σ(B) = M . We may assume
that Q satisfies the hypothesis of the theorem. The fact that 1M is in Q and
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also appears in the matrix P ensures that S = M[M ; I,Λ;P ] is generated by
the finite set Q′ = I × Q × Λ. Let I = {1, . . . , k} and Λ = {1, . . . , l}. Let
P = (pλi).

We construct an automaton B with Σ(B) = S. Let B = (Q′, B, δ′) with B =
A∪C, where C = ((I ∪ {e})×Λ) and δ′ the transformation of Q′ ×B given by

((j, x, µ), (e, λ)) 7→ ((1, x, 1), (j, µ))

((j, x, µ), (i, λ)) 7→ ((1, pλjx, 1), (i, µ))

((j, x, µ), a) 7→ ((1, xπa, 1), aτx)

for x ∈ Q, i ∈ I, j ∈ I, λ, µ ∈ Λ and a ∈ A, and πb, τx as in B.

This construction somewhat resembles the automaton for the wreath product,
in that it is designed to perform the appropriate ‘twist’ to the action of M .
The ‘ideal’ strings, which we use to distinguish elements of S, are those in
D = ({e} × Λ)A∗. For (ji, xi, µi) ∈ (Q′)∗, let (j, x, µ) be the element of S
represented by (j1, x1, µ1) . . . (jk, xk, µk). For (e, λ)α ∈ D we have

(e, λ)α · (j1, x1, µ1) . . . (jk, xk, µk)

= [(j1, µ1)(α · x1)] · (j2, x2, µ2) . . . (jk, xk, µk)

= [(j1, µ2)(α · x1pµ1λ2
x2] · (j3, x3, µ3) . . . (jk, xk, µk)

= (j1, µk)(α · x1pµ1λ2
x2 . . . pµk−1λk

xk)

= (j, µ)(α · x).

Thus B defines a faithful action of S on D.

It is then easy to see that this action extends to an action on the whole of B∗.
We can write any string in B∗ as an alternating product of strings in A∗ and C∗.
Let w ∈ (Q′)∗ with w =S (j, x, µ) ∈ Q′. When w acts on α ∈ A∗, the output
string is α · x and the automaton ends in state (1, x|α, 1) , while when w acts
on (i1, λ1) . . . , (ik, λk) · (j, x, µ), the output string is (i1 · j, µ)(i2, 1) . . . (ik · j, 1)
(where I ∪ {e} is treated as a left zero semigroup with adjoined identity e)
and the automaton ends in state pλ1jpλ21 . . . pλk1x. Since these end states and
outputs depend only on (j, x, µ) and the input string, we conclude that A defines
an action of S on alternating products of strings in A∗ and C∗, that is, on B∗.
Moreover, this action is faithful, since elements can be distinguished by their
actions on D. Hence Σ(A) ∼= S.

6 Strong semilattices of semigroups

We recall the definition of strong semilattices of semigroups here, and refer the
reader to [12, Sect. 4.1] for further background reading:
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a b

0

0|0

1|0

0|0
1|1

0|0
1|0

(1, a, 1) (1, b, 1)

(1, 0, 1)

(1, a, 2) (1, b, 2)

(1, 0, 2)

(2, a, 1) (2, b, 1)

(2, 0, 1)

(2, a, 2) (2, b, 2)

(2, 0, 2)

eλ|11
i1|i1
0|0

i2|i1

1|0

eλ|11
i1|i1
0|0
1|1

i2|i1

eλ|11
iλ|i1
0|0
1|0

eλ|12 i1|i2
0|0 1|1

i2|i2

eλ|12 iλ|i2
0|0 1|0

eλ|12
i1|i2
0|0

1|0

i2|i2

i1|i1
1|0

i2|i1

eλ|21
i1|i1
0|0
1|1

i2|i1

eλ|21
iλ|i1
0|0
1|0

eλ|22
i1|i2
0|0

1|0

i2|i2

eλ|22
i1|i2
0|0
1|1

i2|i2

eλ|22 iλ|i2
0|0 1|0

eλ|21
i1|i1
0|0

Figure 4: Above, the automaton for semigroup F 0, where F is the free monoid
generated by b, and with identity a. Below, the automaton for M[I, F 0,Λ, P ],
where I = Λ = {1, 2} and P =

[
a a
0 0

]
.
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Definition 7. Let Y be a semilattice. Recall that the meet of α, β ∈ Y is
denoted α ∧ β. For each α ∈ Y , let Sα be a semigroup. For α ≥ β, let
φα,β : Sα → Sβ be a homomorphism such that

(i) For each α ∈ Y , the homomorphism φα,α is the identity mapping.

(ii) For all α, β, γ ∈ Y with α ≥ β ≥ γ,

φα,βφβ,γ = φα,γ .

The strong semilattice of semigroups S = S[Y ;Sα;φα,β ] consists of the disjoint
union

⋃
α∈Y Sα with the following multiplication: if x ∈ Sα and y ∈ Sβ , then

xy = (xφα,α∧β)(yφβ,α∧β),

where α ∧ β denotes the greatest lower bound of α and β.

The following result proves that a certain type of strong semilattice of automaton
semigroups is itself an automaton semigroup. Although it is of restricted scope,
this result is of independent interest, and it will also be applied in the following
section on small extensions of automaton semigroups.

Proposition 8. Let S1, . . . , Sk be automaton semigroups and T a finite semi-
group with a right zero. Let Y be the semilattice where all the Si are mutually
incomparable and all greater than T , which is the minimum element of Y . Then
the strong semilattice S = S[Y ;S1, . . . , Sk, T ;φ1, . . . , φk] with φi : Si → T is an
automaton semigroup.

Proof. For 1 ≤ i ≤ k, let Ai = (Qi, Ai, δi) be an automaton for Si. Let P be a
copy of T and B a copy of T 1 and for 1 ≤ i ≤ k let A0

i = Ai ∪ {0}, where 0 is a
new symbol not in any Ai or B. Let B = (Q,C, δ), where Q = Q1∪ . . .∪Qk∪P ,
C = A0

1× . . .×A0
k×B and δ is defined as follows: Let c = (a1, . . . , ak, b) be any

element of C. For p ∈ P we define (p, c)δ = (z, (0, . . . , 0, bp)). For a ∈ Ai and
q ∈ Qi, let πa and τq be as in Ai. We extend τq to τ ′q : A0

i → A0
i by defining

aτ ′q to be aτq if a 6= 0 and 0 if a = 0. The output on reading c in state q is
(a′1, . . . , a

′
k, bφi(q)), where a′i = aiτ

′
q and a′j = 0 for all j 6= i; and we move to

state qπai if ai 6= 0 and to state z otherwise.

For p ∈ P we have Cω · p ⊆ C(0, . . . , 0, z)ω, so the action of P+ on Cω depends
only on its action on C, which is essentially just the action by right multiplication
on B = T 1, so 〈P 〉 ∼= T .

Fix some i ∈ {1, . . . , k}, and let Ci be the subset of C consisting of all tuples
without 0 in their i-th component. Then every string in C∗ is a prefix of some
αcβ, where α ∈ C∗

i , c ∈ C \ Ci and β ∈ Cω. Now for w ∈ Q+
i

αcβ · w = (α · w)(c · w|α)zω.
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a b c d

e z

1|1
2|1

2|2

1|2

β|β 1|1

2|1

e|e
z|z

e|z
z|z

a b c d

e z

1βx|10x
10x|10x

2βx|10x
20x|10x

0βx|00x
00x|00x

2βx|20z
20x|20z

1βx|20z
10x|20z

0βx|00z
00x|00z

αβx|0βx
0βx|0βx

α0x|00x
00x|00x

α1x|01z
01x|01z

α2x|01z
02x|01z

α0x|00z
00x|00z

αβx|00x
α0x|00x
0βx|00x
00x|00x

αβx|00z
α0x|00z
0βz|00z
00x|00z

Figure 5: Below, the automaton for the strong semilattice of semigroups
S[Y ;S1, S2, T ;φi], where S1 = F2 (with basis {a, b}), S2 = N0 (with c be-
ing the additive identity of N0 and d representing the natural number 1), and
T = {e, z} (where e2 = e and ez = ze = z2 = z), where aφ1 = e and bφ1 = z,
and cφ2 = e and dφ1 = z. Throughout the diagram, α and β are arbitrary sym-
bols in {1, 2} and x is an arbitrary symbol in {e, z}. For reasons of space, triples
(κ, λ, µ) are abbreviated κλµ. Above, the original automata for (clockwise from
top left) F2, N0, and T .
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Since the state transitions during the computation of α ·w are governed entirely
by the i-th components of the symbols in α, which in turn are the same as in
Ai, w|α depends only on α and sw, the element of Si represented by w. If for a
string γ ∈ C∗ and j ∈ {1, . . . , k + 1} we denote by γ(j) the string obtained by
reading off the j-th components of symbols in γ, then we have (α·w)(i) = α(i)·w
and (α · w)(j) = 0m for j /∈ {i, k + 1}, where m = |α|. Thus the action of Q+

i

on the first k components of strings in C∗ is an action of Si. Now we need to
check the action on the final component. Let αj be the prefix of α of length j,
for 0 ≤ j ≤ m, and let bj be the final component of the j-th symbol in α. Then
(α · w)(k + 1) = b′1 . . . b

′
m with b′j = bjφi(w|αj−1

). Since each wαj
depends only

on α and ws, this concludes the proof that the action of Q+
i on C∗ is an action

of Si. Moreover, this action is faithful, due to the action on the i-th component
of strings being identical to the action in Ai. So Qi generates a subsemigroup
of Σ(B) isomorphic to Si.

Finally, we establish that the multiplication works correctly outside of the defin-
ing subsemigroups S1, . . . , Sk, T . For any word w ∈ Q+ containing elements
from more than one defining subsemigroup, we have Cω · w ⊆ C(0, . . . , 0, z)ω.
This is because acting by a state in P , or acting on a tuple with 0 in the i-th
position by a state in Qi, both cause a transition to the state z, which sends all
strings to (0, . . . , 0, z). Hence the action of ‘multi-subsemigroup’ words on Cω

is determined entirely by their action on C. For c = (a1, . . . , ak, b) ∈ C, p ∈ P ,
qi ∈ Qi and qj ∈ Qj with i 6= j, we have

c · pqi = (0, . . . , 0, bp) · qi = (0, . . . , 0, bpφi(q)) = c · pqi,
c · qip = (0, . . . , 0, aiτqi , 0, . . . , 0, bφi(qi)) · p = (0, . . . , 0, bφi(q)p) = c · qip,
c · qiqj = (0, . . . , 0, aiτqi , 0, . . . , 0, bφi(qi)) · qj = (0, . . . , 0, bφi(qi)φj(qj)) = c · qiqj ,

where w denotes the element of S represented by w. Hence Σ(B) ∼= S.

7 Small extensions

Recall that if S is a semigroup and T is a subsemigroup of S with S \ T finite,
then S is a small extension of T .

In this section, we present some examples of small extensions of automaton
semigroups that are again automaton semigroups. Our first example is the
k = 1 case of Proposition 8. (For k ≥ 2, the semigroups in Proposition 8 are
not small extensions of automaton semigroups.)

Example 9. Let S be an automaton semigroup and let T be a finite semi-
group with a right zero. Then if φ : S → T is any homomorphism, the strong
semilattice S(1 < 2;S, T ;φ) is an automaton semigroup.

This is example is interesting because it has the potential to lead to an answer

20



to one of the basic open questions about automaton semigroups (see [4, Open
problem 5.3]):

Question 10. Does there exist a non-automaton semigroup S such that S0 is
an automaton semigroup?

If we can prove that some similar strong semilattice with the finite semigroup
T not having a right zero is not an automaton semigroup, then we will have
an example of a semigroup that is not an automaton semigroup, but becomes
one on adjoining a zero. We conjecture that following strong semilattices of
semigroups are not automaton semigroups:

• F2 = 〈x, y〉 above C2 = {e, f} with φ(x) = e, φ(y) = f .

• N0 = 〈0, 1〉 above C2 = {e, f} with φ(0) = e, φ(1) = f .

Example 9 can be generalised in a different direction:

Proposition 11. Let S1 be an automaton semigroup and S2 a finite semigroup
with a right zero. Then any semigroup S = S1 ∪ S2 having S2 as an ideal is an
automaton semigroup.

Proof. LetA1 = (Q1, A, δ1) be any automaton for S1 and letA2 = (Q2, B, δ2) be
the automaton for S2 having Q2 = S2, with B be a copy of S1

2 (whose elements
we will denote in the form b) and (t, b)δ2 = (z, bt) for t ∈ Q2, b ∈ B, where z is
some right zero in Q2. We construct an automaton A with Σ(A) = S as follows:
For each s ∈ S1, let λs and ρs be the transformations of B induced by the left
and right actions respectively of s on S2. Define Λ = {λs | s ∈ S1}∪{ιB}. Since
Λ is a subsemigroup of the full (left) transformation semigroup of B, it is finite.
Let C = (A× Λ) ∪B and let A = (Q1 ∪Q2, C, δ) with δ given by

(x, (a, µ)) 7→ (xπa, (aτx, µλx)) (x, b) 7→ (z, bρx)

(y, (a, µ)) 7→ (z, µy) (y, b) 7→ (z, by)

for x ∈ Q1, y ∈ Q2, a ∈ A, µ ∈ Λ, b ∈ B and for πa and τx as in A1.

We begin by considering the action of words in Q+
2 . For (a, µ) ∈ A× Λ, b ∈ B,

α ∈ Cω and y ∈ Q2, we have (a, µ)α · y = µyzω and bα · y = byzω. Thus the
action of w ∈ Q+

2 on Cω depends only on its actions on Λ and on B, both of
which depend only on the element of S2 represented by w. Moreover, the action
on Λ is faithful, since ιBb = b for all b ∈ B. Hence the subsemigroup of Σ(A)
generated by Q2 is isomorphic to S2.

Next we consider the action of words in Q+
1 . For α ∈ (A× Λ)∗, b ∈ B, γ ∈ Cω

and w ∈ Q+
1 we have

αbγ · w = (α · w)bρw|αz
ω.
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Let sw be the element of S1 represented by w in Σ(A1). If α = (a1, µ1) . . . (ak, µk),
let α ·w = (c1, ν1) . . . (ck, νk). Then in A1 we have a1 . . . ak ·w = c1 . . . ck. Since
Σ(A1) = S1, this means that A restricted to states in Q1 defines a faithful action
of S1 on the first component of strings in (A×Λ)∗. Also note that ρw|α depends
only on α and sw, so that the only possible obstacle to 〈Q1〉 being isomorphic
to S1 would be the action of w on the second component of strings in (A×Λ)∗

not depending only on sw. However, if for 0 ≤ i ≤ k − 1 we let αi be the prefix
of α of length i, then νi+1 = µi+1λw|αi

, and so the second component of α · w
also depends only on sw and α. Hence Q1 generates a subsemigroup of Σ(A)
isomorphic to S1.

It remains to establish that products s1s2 and s2s1 with si ∈ Si act correctly.
Since Cω · S2 ⊆ Czω, we only need to consider the action on C. For a ∈ A,
µ ∈ Λ, b ∈ B and si ∈ Si with s1s2 =S s and s2s1 =S s′ we have

(a, µ) · s1s2 = (aτs1 , µλs1) · s2 = µλs1s2 = (a, µ) · s,
(a, µ) · s2s1 = µs2 · s1 = µs2ρs1 = (a, µ) · s′,

b · s1s2 = bρs1 · s2 = bρs1s2 = b · s,
b · s2s1 = bs2 · s1 = bs2ρs1 = b · s′.

Hence Σ(A) ∼= S and so S is an automaton semigroup.

In [17], Maltcev and Ruškuc gave a construction for a type of small extension as
follows. Let S be any semigroup acting on a finite set X (on the right). Let xs

denote the result of acting on x ∈ X by s ∈ S. The semigroup S[X] is defined
to be the union of S and X, with multiplication given by

st = st, xs = xs, sx = x, xy = y,

for s, t ∈ S, x, y ∈ X.

Example 12. Let S be an automaton semigroup and X a finite set. Then the
semigroup S[X] is an automaton semigroup.

Proof. This follows immediately from Proposition 11, since X is both an ideal of
S[X] and a right zero semigroup. Note that the automaton from Proposition 11
may be simplified in this case, since every element of S acts as a left identity on
X and hence the set Λ is superfluous. An example is shown in Figure 6.

It is not obvious how to construct a (right) automaton for the dual of S[X]
(where S acts on the left and X is a left zero semigroup), because the idea of
Proposition 11 relies heavily on using a right zero to ‘forget’ information once
it is no longer required. A left zero cannot be used in the same way. This leads
to the following question.

Question 13. Does there exist a semigroup S such that S is a right automaton
semigroup but not a left automaton semigroup?
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a b

p q

1|1

2|1

2|2
1|2

p|p
q|p

p|q
q|q

a b

p q

1|1
2|1

2|2

1|2

∗|p ∗|q

q|p

p|q

p|q
q|q

Figure 6: On the right, the automaton for the semigroup F2[X] with F2 = 〈a, b〉,
X = {p, q} and pa = q, qa = p, pb = q, qb = q. On the left, the original automata
for F2 and X.

8 Some new examples of non-automaton semi-
groups

There is so far no general method known for proving a finitely generated semi-
group not to be an automaton semigroup, other than by showing that it fails to
have one of the properties satisfied by all automaton semigroups, such as being
residually finite or having solvable generalised word problem. Previously, the
only known example of a residually finite non-automaton semigroup was N, the
free semigroup of rank 1 [4, Proposition 4.3].

Every subsemigroup of N is finitely generated [20, Theorem 2.7]. (This also
follows from noting that any subsemigroup S of N is isomorphic to one whose
elements have least common multiple 1, and that such a semigroup contains all
but finitely many natural numbers by Euclid’s algorithm and is thus a large sub-
semigroup of the finitely generated semigroup N. Finite generation is preserved
on passing to large subsemigroups [21, Theorem 1.1].) Furthermore, subsemi-
groups of N are residually finite. In this section we show that they do not arise
as automaton semigroups. The importance of this result is that we now have a
countable set of finitely generated residually finite non-automaton semigroups.

In fact we will show slightly more. We establish that no subsemigroup of N0

(the free semigroup of rank 1 with a zero adjoined, not to be confused with
N0, the free monoid of rank 1) is an automaton semigroup. This establishes
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that subsemigroups of N are not potential examples for a ‘yes’ answer to Ques-
tion 10 on the existence of non-automaton semigroups which become automaton
semigroups upon adjoining a zero.

Our approach is akin to the proof of [4, Proposition 4.3], in that we use wreath
recursions to show that any hypothetical automaton for a subsemigroup of N
must contain a state corresponding to a periodic element. We make use of the
following simple lemma.

Lemma 14. Let A = (Q,B, δ) be an automaton such that Σ(A) has a zero.
If there exist q, z ∈ Q, with z representing the zero element of S, such that q
recurses only to itself and z, then q represents a periodic element of S.

Proof. Let q = (q1, . . . , qk)τ be the wreath recursion for q, with qi ∈ {q, z}. Then
for any n, we have qn = (un1, . . . , unm)τn, where each uni can be expressed as
a product of n elements from {q, z}, and is hence in {qn, z}. But this means
that two distinct powers of q must have have identical recursion patterns (that
is, there exist distinct m,n such that τm = τn, with umi = qm if and only if
uni = qn) and hence represent the same element of S, and so q is periodic.

Theorem 15. No subsemigroup of N0 is an automaton semigroup.

Proof. Let S be a subsemigroup of N0 and let X = {(z),m1, . . . ,mn} be a
minimal generating set for S, with m1 < m2 < . . . < mn, where z represents
the zero of N0 and the brackets indicate that z may not be present in X.
Suppose that S = Σ(A) for some automaton A, and let Q be the state set
of A. We denote a state in Q representing an element i of N ∪ {z} by qi. In
particular, we have qi ∈ Q for every i ∈ X. Let k ∈ N be maximal such that
qk ∈ Q and write k = α1m1 + . . . + αnmn with αi < mi−1 for 2 ≤ i ≤ n.
Consider the wreath recursion for qk obtained from qk = qα1

m1
. . . qαn

mn
. We have

qk = (u1, . . . , ud)ρ, where each ui is a state in Q which can be expressed as
a word the form pα1

1 . . . pαn
n for pi ∈ Q. The smallest non-zero element of S

that can be expressed in this form is l := m1α, where α = min{αi}. Thus
each ui is in {z, ql, ql+1, . . . , qk}. If k = l, then this means that qk recurses
only to z and itself and is thus periodic by Lemma 14. So assume l < k. Let
ql = (v1, . . . , vd)σ, and note that vi ∈ {z, ql, . . . , qk} for all i. Now consider two
wreath recursions for the element kl = lk of N:

qkl = qlk = (w1, . . . , wd)ρ
l

= qkl = (x1, . . . , xd)σ
k

where each wi is in Ql, while each xi is in Qk, and wi =S xi for all i. If all
wi are z, then qkl is periodic, so assume that some wi 6= z. Clearly one way to
achieve wi =S xi is if wi = qlk and xi = qkl . And indeed this is the only possible
solution, since replacing any state in wi would result in a word representing
a smaller element of S, while replacing any state in xi would result in a word
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representing a larger element of S (since the states are all in {ql, . . . , qk}). Hence
qk and ql both recurse only to themselves and z and are thus periodic, again by
Lemma 14. But this is a contradiction, since S has no periodic elements, and
hence the automaton A cannot exist.

Question 16. Is there some general technique – perhaps a kind of ‘pumping
lemma’ – that gives a general tool for proving a finitely generated residually
finite semigroup is not an automaton semigroup?
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of Algebra, Vol. 3, pages 989–1112. North-Holland, Amsterdam, 2003.

[3] T. Brough and A. J. Cain. Automaton semigroup constructions. Semi-
group Forum, 90(3):763–774, 2015. URL: http://dx.doi.org/10.1007/
s00233-014-9632-x, doi:10.1007/s00233-014-9632-x.

[4] A. J. Cain. Automaton semigroups. Theoret. Comput. Sci.,
410(47–49):5022–5038, 2009. doi:10.1016/j.tcs.2009.07.054.

[5] A. J. Cain and V. Maltcev. For a few elements more: A survey of finite
Rees index. arXiv:1307.8259.

[6] P. Gillibert. The finiteness problem for automaton semigroups is undecid-
able. Internat. J. Algebra Comput., 24(1):1–9, 2014. URL: http://dx.doi.
org/10.1142/S0218196714500015, doi:10.1142/S0218196714500015.
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