1,908 research outputs found

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    Impact of realistic communications for fast-acting demand side management

    Get PDF
    The rising penetration of intermittent energy resources is increasing the need for more diverse electrical energy resources that are able to support ancillary services. Demand side management (DSM) has a significant potential to fulfil this role but several challenges are still impeding the wide-scale integration of DSM. One of the major challenges is ensuring the performance of the networks that enable communications between control centres and the end DSM resources. This paper presents an analysis of all communications networks that typically participate in the activation of DSM, and provides an estimate for the overall latency that these networks incur. The most significant sources of delay from each of the components of the communications network are identified which allows the most critical aspects to be determined. This analysis therefore offers a detailed evaluation of the performance of DSM resources in the scope of providing real-time ancillary services. It is shown that, using available communications technologies, DSM can be used to provide primary frequency support services. In some cases, Neighbourhood Area Networks (NANs) may add significant delay, requiring careful choice of the technologies deployed

    Heracles: Fully Synthesizable Parameterized MIPS-Based Multicore System

    Get PDF
    Heracles is an open-source complete multicore system written in Verilog. It is fully parameterized and can be reconfigured and synthesized into different topologies and sizes. Each processing node has a 7-stage pipeline, fully bypassed, microprocessor running the MIPS-III ISA, a 4-stage input-buffer, virtual-channel router, and a local variable-size shared memory. Our design is highly modular with clear interfaces between the core, the memory hierarchy, and the on-chip network. In the baseline design, the microprocessor is attached to two caches, one instruction cache and one data cache, which are oblivious to the global memory organization. The memory system in Heracles can be configured as one single global shared memory (SM), or distributed shared memory (DSM), or any combination thereof. Each core is connected to the rest of the network of processors by a parameterized, realistic, wormhole router. We show different topology configurations of the system, and their synthesis results on the Xilinx Virtex-5 LX330T FPGA board. We also provide a small MIPS cross-compiler toolchain to assist in developing software for Heracles

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF

    Multi-core devices for safety-critical systems: a survey

    Get PDF
    Multi-core devices are envisioned to support the development of next-generation safety-critical systems, enabling the on-chip integration of functions of different criticality. This integration provides multiple system-level potential benefits such as cost, size, power, and weight reduction. However, safety certification becomes a challenge and several fundamental safety technical requirements must be addressed, such as temporal and spatial independence, reliability, and diagnostic coverage. This survey provides a categorization and overview at different device abstraction levels (nanoscale, component, and device) of selected key research contributions that support the compliance with these fundamental safety requirements.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under grant TIN2015-65316-P, Basque Government under grant KK-2019-00035 and the HiPEAC Network of Excellence. The Spanish Ministry of Economy and Competitiveness has also partially supported Jaume Abella under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717).Peer ReviewedPostprint (author's final draft
    • …
    corecore