705 research outputs found

    Dynamic Model-based Management of Service-Oriented Infrastructure.

    Get PDF
    Models are an effective tool for systems and software design. They allow software architects to abstract from the non-relevant details. Those qualities are also useful for the technical management of networks, systems and software, such as those that compose service oriented architectures. Models can provide a set of well-defined abstractions over the distributed heterogeneous service infrastructure that enable its automated management. We propose to use the managed system as a source of dynamically generated runtime models, and decompose management processes into a composition of model transformations. We have created an autonomic service deployment and configuration architecture that obtains, analyzes, and transforms system models to apply the required actions, while being oblivious to the low-level details. An instrumentation layer automatically builds these models and interprets the planned management actions to the system. We illustrate these concepts with a distributed service update operation

    Mayflower - Explorative Modeling of Scientific Workflows with BPEL

    Get PDF
    Using workflows for scientific calculations, experiments and simulations has been a success story in many cases. Unfortunately, most of the existing scientific workflow systems implement proprietary, non-standardized workflow languages, not taking advantage of the achievements of the conventional business workflow technology. It is only natural to combine these two research branches in order to harness the strengths of both. In this demonstration, we present Mayflower, a workflow environment that enables scientists to model workflows on the fly using extended business workflow technology. It supports the typical trial-and-error approach scientists follow when developing their experiments, computations or simulations and provides scientists with all crucial characteristics of the workflow technology. Additionally, beneficial to the business stakeholders, Mayflower brings additional simplification in workflow development and debugging

    MLOps: A Review

    Full text link
    Recently, Machine Learning (ML) has become a widely accepted method for significant progress that is rapidly evolving. Since it employs computational methods to teach machines and produce acceptable answers. The significance of the Machine Learning Operations (MLOps) methods, which can provide acceptable answers for such problems, is examined in this study. To assist in the creation of software that is simple to use, the authors research MLOps methods. To choose the best tool structure for certain projects, the authors also assess the features and operability of various MLOps methods. A total of 22 papers were assessed that attempted to apply the MLOps idea. Finally, the authors admit the scarcity of fully effective MLOps methods based on which advancements can self-regulate by limiting human engagement

    A Model-Based Monitoring Architecture for Heterogeneous Enterprise Services and Information Systems

    Full text link
    Runtime management of distributed information systems is a complex and costly activity. One of the main challenges that must be addressed is obtaining a complete and updated view of all the managed runtime resources. This article presents a monitoring architecture for heterogeneous and distributed information systems. It is composed of two elements: an information model and an agent infrastructure. The model negates the complexity and variability of these systems and enables the abstraction over non-relevant details. The infrastructure uses this information model to monitor and manage the modeled environment, performing and detecting changes in execution time. The agents infrastructure is further detailed and its components and the relationships between them are explained. Moreover, the proposal is validated through a set of agents that instrument the JEE Glassfish application server, paying special attention to support distributed configuration scenarios

    A Classification of BPEL Extensions

    Get PDF
    The Business Process Execution Language (BPEL) has emerged as de-facto standard for business processes implementation. This language is designed to be extensible for including additional valuable features in a standardized manner. There are a number of BPEL extensions available. They are, however, neither classified nor evaluated with respect to their compliance to the BPEL standard. This article fills this gap by providing a framework for classifying BPEL extensions, a classification of existing extensions, and a guideline for designing BPEL extensions

    The Pipeline for the Continuous Development of Artificial Intelligence Models -- Current State of Research and Practice

    Full text link
    Companies struggle to continuously develop and deploy AI models to complex production systems due to AI characteristics while assuring quality. To ease the development process, continuous pipelines for AI have become an active research area where consolidated and in-depth analysis regarding the terminology, triggers, tasks, and challenges is required. This paper includes a Multivocal Literature Review where we consolidated 151 relevant formal and informal sources. In addition, nine-semi structured interviews with participants from academia and industry verified and extended the obtained information. Based on these sources, this paper provides and compares terminologies for DevOps and CI/CD for AI, MLOps, (end-to-end) lifecycle management, and CD4ML. Furthermore, the paper provides an aggregated list of potential triggers for reiterating the pipeline, such as alert systems or schedules. In addition, this work uses a taxonomy creation strategy to present a consolidated pipeline comprising tasks regarding the continuous development of AI. This pipeline consists of four stages: Data Handling, Model Learning, Software Development and System Operations. Moreover, we map challenges regarding pipeline implementation, adaption, and usage for the continuous development of AI to these four stages.Comment: accepted in the Journal Systems and Softwar

    LIFEDATA - a framework for traceable active learning projects

    Get PDF
    Active Learning has become a popular method for iteratively improving data-intensive Artificial Intelligence models. However, it often presents a significant challenge when dealing with large volumes of volatile data in projects, as with an Active Learning loop. This paper introduces LIFEDATA, a Python- based framework designed to assist developers in implementing Active Learning projects focusing on traceability. It supports seamless tracking of all artifacts, from data selection and labeling to model interpretation, thus promoting transparency throughout the entire model learning process and enhancing error debugging efficiency while ensuring experiment reproducibility. To showcase its applicability, we present two life science use cases. Moreover, the paper proposes an algorithm that combines query strategies to demonstrate LIFEDATA’s ability to reduce data labeling effort
    corecore