3 research outputs found

    Model-driven development of data intensive applications over cloud resources

    Get PDF
    The proliferation of sensors over the last years has generated large amounts of raw data, forming data streams that need to be processed. In many cases, cloud resources are used for such processing, exploiting their flexibility, but these sensor streaming applications often need to support operational and control actions that have real-time and low-latency requirements that go beyond the cost effective and flexible solutions supported by existing cloud frameworks, such as Apache Kafka, Apache Spark Streaming, or Map-Reduce Streams. In this paper, we describe a model-driven and stepwise refinement methodological approach for streaming applications executed over clouds. The central role is assigned to a set of Petri Net models for specifying functional and non-functional requirements. They support model reuse, and a way to combine formal analysis, simulation, and approximate computation of minimal and maximal boundaries of non-functional requirements when the problem is either mathematically or computationally intractable. We show how our proposal can assist developers in their design and implementation decisions from a performance perspective. Our methodology allows to conduct performance analysis: The methodology is intended for all the engineering process stages, and we can (i) analyse how it can be mapped onto cloud resources, and (ii) obtain key performance indicators, including throughput or economic cost, so that developers are assisted in their development tasks and in their decision taking. In order to illustrate our approach, we make use of the pipelined wavefront array

    Model-driven development of data intensive applications over cloud resources

    Full text link
    The proliferation of sensors over the last years has generated large amounts of raw data, forming data streams that need to be processed. In many cases, cloud resources are used for such processing, exploiting their flexibility, but these sensor streaming applications often need to support operational and control actions that have real-time and low-latency requirements that go beyond the cost effective and flexible solutions supported by existing cloud frameworks, such as Apache Kafka, Apache Spark Streaming, or Map-Reduce Streams. In this paper, we describe a model-driven and stepwise refinement methodological approach for streaming applications executed over clouds. The central role is assigned to a set of Petri Net models for specifying functional and non-functional requirements. They support model reuse, and a way to combine formal analysis, simulation, and approximate computation of minimal and maximal boundaries of non-functional requirements when the problem is either mathematically or computationally intractable. We show how our proposal can assist developers in their design and implementation decisions from a performance perspective. Our methodology allows to conduct performance analysis: The methodology is intended for all the engineering process stages, and we can (i) analyse how it can be mapped onto cloud resources, and (ii) obtain key performance indicators, including throughput or economic cost, so that developers are assisted in their development tasks and in their decision taking. In order to illustrate our approach, we make use of the pipelined wavefront array.Comment: Preprin

    Automating performance analysis from taverna workflows

    No full text
    Workflow systems provide support for combining components to achieve a particular outcome. Various approaches from software engineering have been utilized within such systems, such as the use of design patterns to support composition, and the use of a software engineering lifecycle to support workflow construction and execution. As components used within a workflow may be implemented by third parties, it is often necessary to be able to determine the impact a particular component composition will have on the overall execution of a workflow. A method for predicting the execution time of a given workflow is proposed. First, the method obtains a model from a given workflow in an automated way. The model obtained is a Reference net – a specific type of Petri net. Features of Reference nets can subsequently be exploited, such as the possibility of building hierarchical workflow models which can facilitate the modelling process. The Reference nets are extended so that each task in the model is parameterised with a time value, representing the execution time of the task. We propose several timing profiles: those obtained from real measurement of the workflow system, from stochastic and constant values which allow us to test the model behaviour under specific situations
    corecore