41 research outputs found

    Value of Mineralogical Monitoring for the Mining and Minerals Industry In memory of Prof. Dr. Herbert Pöllmann

    Get PDF
    This Special Issue, focusing on the value of mineralogical monitoring for the mining and minerals industry, should include detailed investigations and characterizations of minerals and ores of the following fields for ore and process control: Lithium ores—determination of lithium contents by XRD methods; Copper ores and their different mineralogy; Nickel lateritic ores; Iron ores and sinter; Bauxite and bauxite overburden; Heavy mineral sands. The value of quantitative mineralogical analysis, mainly by XRD methods, combined with other techniques for the evaluation of typical metal ores and other important minerals, will be shown and demonstrated for different minerals. The different steps of mineral processing and metal contents bound to different minerals will be included. Additionally, some processing steps, mineral enrichments, and optimization of mineral determinations using XRD will be demonstrated. Statistical methods for the treatment of a large set of XRD patterns of ores and mineral concentrates, as well as their value for the characterization of mineral concentrates and ores, will be demonstrated. Determinations of metal concentrations in minerals by different methods will be included, as well as the direct prediction of process parameters from raw XRD data

    Summaries of the Sixth Annual JPL Airborne Earth Science Workshop

    Get PDF
    This publication contains the summaries for the Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996. The main workshop is divided into two smaller workshops as follows: (1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, on March 4-6. The summaries for this workshop appear in Volume 1; (2) The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on March 6-8. The summaries for this workshop appear in Volume 2

    Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors

    Get PDF
    Mapping and monitoring soil spatial variability is particularly problematic for temporally and spatially dynamic properties such as soil salinity. The tools necessary to address this classic problem only reached maturity within the past 2 decades to enable field- to regional-scale salinity assessment of the root zone, including GPS, GIS, geophysical techniques involving proximal and remote sensors, and a greater understanding of apparent soil electrical conductivity (ECa) and multi- and hyperspectral imagery. The concurrent development and application of these tools have made it possible to map soil salinity across multiple scales, which back in the 1980s was prohibitively expensive and impractical even at field scale. The combination of ECa-directed soil sampling and remote imagery has played a key role in mapping and monitoring soil salinity at large spatial extents with accuracy sufficient for applications ranging from field-scale site-specific management to statewide water allocation management to control salinity within irrigation districts. The objective of this paper is: (i) to present a review of the geophysical and remote imagery techniques used to assess soil salinity variability within the root zone from field to regional scales; (ii) to elucidate gaps in our knowledge and understanding of mapping soil salinity; and (iii) to synthesize existing knowledge to give new insight into the direction soil salinity mapping is heading to benefit policy makers, land resource managers, producers, agriculture consultants, extension specialists, and resource conservation field staff. The review covers the need and justification for mapping and monitoring salinity, basic concepts of soil salinity and its measurement, past geophysical and remote imagery research critical to salinity assessment, current approaches for mapping salinity at different scales, milestones in multi-scale salinity assessment, and future direction of field- to regional-scale salinity assessment

    Matched filter stochastic background characterization for hyperspectral target detection

    Get PDF
    Algorithms exploiting hyperspectral imagery for target detection have continually evolved to provide improved detection results. Adaptive matched filters, which may be derived in many different scientific fields, can be used to locate spectral targets by modeling scene background as either structured geometric) with a set of endmembers (basis vectors) or as unstructured stochastic) with a covariance matrix. In unstructured background research, various methods of calculating the background covariance matrix have been developed, each involving either the removal of target signatures from the background model or the segmenting of image data into spatial or spectral subsets. The objective of these methods is to derive a background which matches the source of mixture interference for the detection of sub pixel targets, or matches the source of false alarms in the scene for the detection of fully resolved targets. In addition, these techniques increase the multivariate normality of the data from which the background is characterized, thus increasing adherence to the normality assumption inherent in the matched filter and ultimately improving target detection results. Such techniques for improved background characterization are widely practiced but not well documented or compared. This thesis will establish a strong theoretical foundation, describing the necessary preprocessing of hyperspectral imagery, deriving the spectral matched filter, and capturing current methods of unstructured background characterization. The extensive experimentation will allow for a comparative evaluation of several current unstructured background characterization methods as well as some new methods which improve stochastic modeling of the background. The results will show that consistent improvements over the scene-wide statistics can be achieved through spatial or spectral subsetting, and analysis of the results provides insight into the tradespaces of matching the interference, background multivariate normality and target exclusion for these techniques

    Final Report for the MANNRRSS II Program Management of Nevada's Natural Resources with Remote Sensing Systems, Beatty, NV

    Full text link
    corecore