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ABSTRACT 

The Hawaiian Islands have been a world-famous traveling spot for their unique tropical island 

view. But the particular geological formation of the islands and their unique locations have always 

proposed challenges for geotechnical engineers and geologists. For example, coral sand is widely 

encountered in coastal areas of tropical or subtropical regions. It can be found on most beaches in 

Hawaiian islands. Compared with silica sand, it usually exhibits weaker mechanical performance 

from the perspective of engineering geology. Thus, necessary soil improvements shall be applied 

to the coral. Considering the fragile and unique ecosystem, sustainable material with less carbon 

footprint and less environmental impact would be developed and selected priorly. Moreover, the 

infrastructures along the island have been facing coastal erosion issues from both physical erosion 

(waves) and chemical erosion (sea wind and seawater). The road embankment, the house 

embankment, the harbor, etc often require maintenance to sustain their service time. Due to the 

topography and climate, the windward side of the coastal area on Oahu is suffering from marine 

microplastics (MP) pollution issues. Furthermore, as an island state, hurricanes and tsunamis could 

also threaten the safety of islanders and infrastructures. Therefore, as a geotechnical major Ph.D. 

student, this dissertation would devote some potential solutions to the challenges.  

Firstly, a novel alkali-activation-based sustainable binder was developed for coral sand 

stabilization. The alkali-activated slag (AAS) binder material was composed of ground granulated 

blast furnace slag (GGBS) and hydrated lime with the amendment of biochar, an agricultural 

waste-derived material. The biochar-amended AAS stabilized coral sand was subjected to a series 

of laboratory tests to determine its mechanical, physicochemical, durability, and microstructural 

characteristics as well as durability. Results show that the addition of a moderate amount of biochar 

in AAS could improve soil strength, elastic modulus, and water holding capacity by up to 20%, 

70%, and 30%, respectively. Moreover, the addition of biochar in AAS had a marginal effect on 

the sulfate resistance of the stabilized sand, especially at high biochar content. However, the 

resistance of the AAS-stabilized sand to wet-dry cycles slightly deteriorated with the addition of 

biochar. Based on these observations, a conceptual model showing biochar-AAS-sand interactions 

was proposed, in which biochar served as an internal curing agent, micro-reinforcer, and 

mechanically weak point. 
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Secondly, a state-of-the-art deep-learning algorithm, Mask R-CNN, was utilized for the clayey 

soil crack detection, locating and segmentation. A comprehensive dataset including 1200 

annotated crack images of 256×256 resolution was prepared for the algorithm training and 

validation. The proposed Mask R-CNN algorithm achieved precision, recall and F1 score of 

73.29%, 82.76% and 77.74%, respectively. Besides, the algorithm gained a mean locating 

accuracy (APbb) of 64.14% and a mean segmentation accuracy (APm) of 47.59%. The detection 

performance of the Mask R-CNN was also compared with the U-Net in three different scenarios. 

The test results have demonstrated the superiority of the Mask R-CNN over the U-Net algorithm 

in crack detection, locating and segmentation and the algorithm could automatically process the 

crack characterization.  

Then, this dissertation proposed a state-of-the-art deep learning-based approach, Mask R-CNN, 

to locate, classify, and segment large marine microplastic particles (fiber, fragment, pellet, and 

rod). The fully trained Mask R-CNN algorithm was compared with U-Net in characterizing 

microplastics against various backgrounds. The results showed that the algorithm could achieve 

Precision=93.30%, Recall=95.40%, F1 score=94.34%, APbb=92.7%, and APm = 82.6% in a 250 

images dataset with white background. The algorithm could also achieve a processing speed of 

12.5 FPS. The results obtained in this study implied that the Mask R-CNN algorithm is a promising 

microplastics characterization method that can be potentially used in the future for large-scale 

surveys.  

Finally, a video instance segmentation algorithm was trained to locate, identify, and segment 

soil cracks in a real-time video stream. The algorithm could record the cracks' locations and 

numbers simultaneously. Besides, the crack ratio of clay could be calculated by crack pixels 

divided by total clay pixels among the entire soil cracking process. Furthermore, Structure from 

Motion (SfM) has been applied to reconstruct the 3D soil desiccation models. The soil crack can 

be detected in a 3D point cloud graph and highlighted. A series of 3D parameters like depth, 

volume, and cross-section profile can be obtained for future analysis. The proposed video instance 

segmentation method has demonstrated the potential application for real-time crack alerts and 

monitoring of geotechnical infrastructures via surveillance cameras. 

.  
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CHAPTER 1 Innovative Building Material and Computer Vision Methods in 

Geotechnical Engineering  

 

1.1 Introduction 

As a traditional civil engineering subject, geotechnical engineering deals with geo-structures 

built on, in or with soils and rocks. The intrinsic uncertainty, complexity, and invisibility of such 

materials have made the recognition and understanding of geotechnical processes challenging. 

Geotechnical engineering has become an interdisciplinary major, which has a strong connection 

with environmental engineering, coastal engineering, mining engineering, construction 

engineering, transportation engineering, etc. the advancement of material science, new materials 

such as alkali activated slag has been popular in geotechnical fields. Traditional sensors like strain 

gauges, thermometers, and piezometers can only record one-dimensional (1D) data streams. 

Though geotechnical engineers can interpret the geotechnical process behind the data, the 

information obtained from 1D data could be limited in some cases. As s new round of new 

infrastructure stimulus is carried out in the United States and China, more state-of-the-art 

techniques shall be applied during the design, site investigation, construction process management, 

and maintenance stages. Recently, with the revolutionary progress in data collection and 

cyberinfrastructure, two-dimensional (2D) data like images and videos, even three-dimensional 

(3D) data like point clouds and mesh files, can be captured and stored. Since the data sizes have 

increased dramatically compared to 1D data, more robust tools are required to finish the analysis. 

More sophisticated methods involved with computer vision and deep learning technologies have 

been applied to digitize, visualize, and analyze such geotechnical problems. 

1.2 Innovative building material in geotechnical engineering 

1.2.1 Ground-granulated blast-furnace slag (GGBS) 

Ground granulated blast-furnace slag (GGBS) is the by-product of iron and steel blast furnace. 

The granular material later is dried and ground into powder. The GGBS has been proven a 

sustainable binder material that could partially replace Ordinary Portland Cement (OPC)(Jin et al., 

2015). The OPC has always been a controversial product. For one thing, global OPC production 
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and demand are growing. For the another, the complaint and criticism of high carbon emission 

from cement production seems never cease(Crossin, 2015). The GGBS has a low cost of raw 

material and the recycling use of the byproduct could save energy and resources, which makes it 

popular in multi-engineering applications(K. H. Yang et al., 2012). 

 

1.2.1.1 The mechanism of alkali activation 

Alkali activation is a complex chemical reaction between a solid aluminosilicate precursor and 

an alkaline activator. Based on the application purpose, different materials containing silica and 

aluminum such as kaolin clay, metakaolin, fly ashes, GGBS, and a mixture of these materials could 

be activated (Fernando Pacheco-Torgal et al., 2008). The activator could be a strong alkaline 

solution like alkali hydroxide (ROH) or mild alkaline like sodium silicates (Na2SiO3) and calcium 

hydroxide(Ca(OH)2)(Jeong et al., 2016). The reaction starts with the breakdown of the covalent 

bonds Si-O-Si and Al-O-Si, which usually need help from an alkaline environment. Then these 

groups are transformed into a colloid phase. Finally, with more colloid groups generated, the 

coagulation of groups will produce a more condensed structure and the strength of the structure 

will increase. 

 

1.2.1.2 The advantages of alkali activated slag 

Apart from the cost and low carbon emission, engineers have found that the advantages of 

GGBS are mechanical, environmental, and chemical aspects.  

 

High strength concrete 

Wang et al. (1995) summarized that alkali activated slag concrete can quickly achieve 60-150 

MPa without chemical additives. Shi & Qian (2000) compared the strength of GGBS mortars under 

different activators with Type III Portland Cement. The research found that the sodium silicate-

activated slag had the highest early strength and the final strength. To satisfy the same strength 

need for a high-performance structure, the cost of alkali activated slag will be much cheaper than 

high-performance concrete(F. Pacheco-Torgal et al., 2012). 

 

Resistance to high temperature 
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It has been proved that Portland cement will deteriorate when the temperature exceeds 300 ℃. 

However, AAS binders or concrete have high stability even if the temperature is higher than 

1000 °C(F. Pacheco-Torgal et al., 2012). Zhao & Sanjayan, (2011) tested the performance of both 

AAS material and Portland cement under a fire furnace test. No spalling has been found on AAS 

material while cracks and spalling could be seen on Portland cement samples.  

 

Durability 

The impermeability reported by Wang et al. (1995) could be one of the reasons why alkali 

activated slag has superior durability. The highly compacted structure of AAS enables a low 

permeability and keeps the internal part intact. Jiang et al., (2018) found that alkali activated slag 

treated clay had better sulfate resistance performance over Portland cement. The clay sample 

showed a non-crack surface after 120 days, while the cement-treated soil was full of cracks. Even 

in a seawater environment, the AAS material could maintain stability(El-Didamony et al., 2012). 

 

Stabilization heavy metals 

Though Portland cement has been adopted widely for the stabilization of wastes, it is not 

effective in stabilizing heavy metals such as Pb, Cu, Cd, Cr, and Hg(Deja, 2002). Shi & Fernández-

Jiménez, (2006) reported that AAS material could immobilize these heavy metal ions under multi-

activators. Yunsheng et al., (2007) studied the immobilization behaviors of Pb and Cu using AAS 

(metakaolin and slag). The immobilization efficiency was about 98.5% when a leaching test was 

carried out.  

 

1.2.1.3 The applications of Alkali Activated Slag in geotechnical engineering 

Since the AAS is utilized to partially replace Portland cement, AAS could be adopted in many 

scenarios where Portland cement has been used in geotechnical engineering. 

Soil stabilization 

Portland cement, lime, and other Ca-based stabilizer are widely applied in soil stabilization due 

to their profuse availability and low cost (Maheepala et al., 2022). However, when treating sulfate-

rich soil, the ettringite will cause volume expansion and strength loss, which leads to a crack 

development in the stabilized area. The AAS binder such as sodium silicate activated GGBS has 

proved GGBS column showed less structural damage and higher strength after soaking in 5% 
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sodium sulfate solution. While the Portland cement suffered severe expansion and strength loss 

(Komljenović et al., 2013). Bhavita Chowdary et al. (2021) proposed the application of AAS 

binders for Deep Soil Mixing (DSM) to improve the bearing capacity of the soft soil. A binder 

content larger than 10% and an activator-to-binder ratio larger than 0.5 were recommended to meet 

the requirement for DSM application. The AAS binder showed better weight loss when tested 

under a wet-dry experiment. 

 

Tailings dam 

Alkali activated carbide lime and sugarcane bagasse ash, a low carbon emission AAS binder 

material, have been devoted to gold mining tailings dam stabilization (Pereira dos Santos et al., 

2022). By recycling the unrefined industrial waste (carbide) and biowaste (sugarcane ash), the 

AAS binder has achieved the mechanical and environmental requirements for stabilizing the 

tailings dam. Moreover, AAS material could be applied to improve the impermeability of gold 

mines, where the tailings contain many hazardous heavy metals such as Cr, Cu, Ni, Zn, and Mn 

(Kiventerä et al., 2018). Due to the acidic water within the tailing dam, the impermeability of 

barriers made of Portland cement is vulnerable. The superior durability and small pore size 

distribution enable the AAS barrier a suitable replacement. 

 

Road embankment 

Obuzor et al., (2012) confirmed the validity of utilizing GGBS and CaO as a binder to stabilize 

clay as road embank in flood plains areas. Due to the nature of low soil strength in these areas, 

usually, lots of binder materials will be consumed when building the road embankment. Besides, 

considering the risk of flooding, an extended soaking experiment was applied to ensure durability 

during flooding season. Considering the trend for sustainable building materials, many waste 

materials such as recycled glass, recycled concrete and solid waste from waste water disposal 

plants have been redeployed as construction materials, especially in road embankments. Arulrajah 

et al. (2016) creatively used coffee grounds as fill material for AAS material and applied the 

mixture to road embankment. After the treatment with AAS material the biodegradable material, 

coffee grounds are long-lasting filling material and could potentially save a huge volume of landfill 

site. 
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1.2.2 Biochar 

Biochar is the solid residue obtained from organic biomass under certain thermal combustion 

in an oxygen-limited environment(J. Wang & Wang, 2019). Various biowaste including grass, 

cow manure, wood chips, rice husk, wheat straw, cassava rhizome, and other agricultural residues 

can be utilized as raw material for biochar production(Yu et al., 2022). Even sludge produced from 

wastewater treatment is a promising feedstock for making biochar(Sepehri & Sarrafzadeh, 2018). 

Based on the source of the feedstock, the biochar can be classified into straw biochar, shell biochar, 

wood biochar, sludge biochar, animal fecal biochar, bamboo biochar and others(Dai et al., 2019). 

1.2.2.1 The production of biochar 

The production process of biochar can be regarded as a carbonization process, where the 

organic matter will be denatured and concentrated into biochar (solid residue) and bio-oil (liquid). 

In the meantime, gases generated during the pyrolysis are named syngas, which usually contain 

carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2), methane (CH4) and nitric oxide 

(NO) (J. Wang & Wang, 2019). has been widely adopted for biochar production in both small 

(laboratory) and large scales (industry) (Wani et al., 2022). Libra et al. (2011) A summary of the 

common pyrolysis process are listed in Table 1-1. 

 

1.2.2.2 The physicochemical properties of biochar 

The advantages of biochar, such as rich carbon content, high cation exchange rate， and large 

surface area have made biochar popular in the past decade (Oliveira et al., 2017). The properties 

of biochar are affected by the feedstock types and pyrolysis conditions(Ahmad et al., 2014). For 

example, a higher pyrolysis temperature will lead to a higher surface area and porosity(Y. Zhang 

et al., 2021). In this part, the physicochemical properties of biochar will be briefly summarized: 

 

Porosity and Surface area 

The surface area of biochar has been proven positively correlated with its porosity(Leng et al., 

2021). During the pyrolysis process, the water evaporation and volatile release from the carbon 

matrix will generate a pore structure(Bagreev et al., 2001). With the various feedstock types and 

pyrolysis conditions, the surface area will increase from 8 m2/g to 490.8 m2/g(B. Chen et al., 2008). 

While the porosity of biochar will vary between 0.016 cm3/g to 0.25 cm3/g(H. Yang et al., 2016).  
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Table 1-1 Different pyrolysis processes (Wani et al., 2022) 

 

Carbon content 

Due to the pyrolysis process, the volatile part will be discarded and the solid residue contains 

high carbon content. The thermal stability of biochar makes it a perfect carbon-sequestration 

material(J. Wang & Wang, 2019). Considering the raw material of biochar, if those biowastes were 

naturally degraded, the carbon captured from the atmosphere via photosynthesis will soon return 

to Greenhouse Gases (GHG) again. Fortunately, since the highly condensed aromatic structure, 

biochar showed strong resistance to degradation and could be stable for even a thousand 

years(Oliveira et al., 2017).  

 

Cation exchange Capacity (CEC) 

Cation exchange capacity indicates the total cations adsorbed on the surface of biochar. The 

CEC is attributed to the carboxylate (RCOO-) and phenolate (C6H5O-) functional groups produced 

during the pyrolysis, which creates lots of negatively charged sites on the biochar surface(Banik 

et al., 2018). Research has proved that biochar has superior cation exchange capacities (CECs) that 

increase with pH and decrease with increasing pyrolysis temperature(Mukherjee et al., 2011; Yao 

 Temperature Heating 

rate 

Residence 

time 

Biochar 

yield 

Bio-oil 

yield 

Syngas 

yield 

Slow 400-900 ℃ 0.1-10 ℃/s >5min 25-50% 20-40% 10-25% 

Fast 450-800 ℃ 10-

200 ℃/s 

10-25 min 15-25% 60-70% 10-20% 

Flash 600-1200 ℃ >1000 ℃/s <1 min 5-15% 25-40% 56-60% 

Hydrothermal 180-220 ℃ <10 ℃/min 1-72 h 10-25% 68-75% 3-9% 

Torrefaction 200-300 ℃ <50 ℃/min 30 mins to 

hours 

80% 0% 20% 

Solar 150-2000 ℃ 5-450 ℃/s - 8-29% 25-78% 1.4-63% 

Gasification 600-1800 ℃ - Seconds 

to 

minutes 

10% 5% 85% 
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et al., 2012). Furthermore, Lei et al. (2019) confirmed that animal manure-based biochar can 

immobilize more Cd (II) and Cu (II), compared with plant-based biochar.  

 

Water holding capacity (WHC) 

The surface morphology of biochars is heterogeneous and complex, due to the staggered 

channels and pore networks. Micropores (< 2mm) contribute most of the surface area within 

biochar. The enormous amount of internal micro pores within the biochar makes it a perfect place 

for water storage. Han et al. (2022) utilized biochar as water holding additive to enhance the AAS 

material, where the biochar can absorb 7 times its weight of itself in a saturated condition. A similar 

result has been confirmed by Chen et al. (2016), where 2.9 mL water can be stored in 1 gram of 

dry biochar. Whereas, 1 gram of activated carbon can only absorb 1.5 mL of water. Apart from 

the contribution from porosity, the zeta potential, and CEC. 

 

pH 

Various studies have reported that the content of alkali and alkaline earth metals in biochar will 

be amplified and the pH of biochar will move towards alkalinity, when the pyrolysis temperature 

was increased(P. Kim et al., 2011; Mohanty et al., 2013; Titiladunayo et al., 2012). While pyrolysis 

temperature is low (200-300℃), cellulose and hemicellulose would produce organic acids and 

phenolics, which will produce acidic biochar(Nanda et al., 2016).  

 

1.2.2.3 The applications of biochar in other fields 

So far, biochar has been applied in environmental, chemical, agronomy, carbon market, 

construction, and fuel fields, which is illustrated in Fig. 1-1. The successful applications of biochar 

in various fields highly rely on the carbon content, surface area, pore size distribution, alkalinity, 

ion-exchange capacity, and elemental composition(Nanda et al., 2016b). These properties are 

subject to biochar feedstock, temperature, heating rate and residence time, oxidation medium, and 

potential post-processing treatments(Lua et al., 2004). 



8 

 

 
Fig. 1-1 Functions of biochar (Adapted from Nanda et al., 2016) 

1.2.2.4 The applications of biochar in geotechnical engineering 

The porous structure and ideal water holding capacity have made biochar popular in soil 

property modification. By adding biochar to soil, the specific gravity can be reduced and the 

permeability will increase, which draws the attention of geotechnical engineers(Chen et al., 2016). 

 

Soil stabilization 

Haque et al. (2014) utilized biochar as an amendment for clay stabilization. They proved that 

less cementitious material is required to achieve the same soil strength since biochar could create 

interface cementation, surface deposition, and pore space filling. When biochar is applied for the 

stabilization of expansive soil, the plasticity index will decrease remarkably(GuhaRay et al., 2019). 

Reddy et al. (2015) witnesses an obvious increase trend of friction angle when more biochar is 

added to stabilize silty clay. 

 

Concrete 



9 

 

Due to the porous internal structure, biochar has been used for lightweight concrete panels, 

biochar bricks, and plasters(Gupta & Kua, 2017). The internal curing ability of biochar can 

contribute to the hydration degree of cement, which leads to a less cement dosage when reaching 

the same level of strength(Dixit et al., 2019). Gupta et al. (2020) demonstrate that with a tiny 

addition of 0.5% biochar, the compressive strength of concrete could be improved by around 15%. 

The flexural strength and splitting tensile strength of biochar-amended concrete are superior to 

conventional concrete. Furthermore, being part of the concrete material, biochar can offset the CO2 

emission from the cement industry(Akhtar & Sarmah, 2018). 

 

Landfill cover material 

Hydraulic conductivity and shear strength are important geotechnical parameters to ensure a 

stable landfill cover system. The hydraulic conductivity of biochar-amended soil could be 

improved about 100 times compared with soil alone(Reddy et al., 2015). The high conductivity 

will provide a channel for introducing more oxygen to a deeper layer of the landfill and increase 

the oxidation efficiency. Also, the unconfined compressive strength increased significantly with 

biochar amendment when biochar is adopted to modify an expansive soil (GuhaRay et al., 2019). 

1.3 Computer vision methods in geotechnical engineering 

1.3.1 Deep learning 

1.3.1.1 The digitizing process of geotechnical engineering  

Due to the expansion of human population and consumption, the demand for more space and 

resource have motivated engineers to construct facilities on or in earth materials (e.g., soil and 

rock) and exploit minerals. During the interactions between humans and nature, it is essential for 

geoengineers such as geotechnical engineer, geoenvironmental engineer and mining engineer to 

understand the behavior of earth materials (Yin et al., 2020). However, the properties of soil and 

rock might be vulnerable to physical, chemical and microbial disturbances, which lead to the data 

acquisition of earth materials being very laborious. All the uncertainties related to earth materials 

have made geoscience a challenging terminology (Mitchell and Soga, 2005).  

Therefore, during the construction stage of civil infrastructures built in earth material, dense 

instrumentation including data collection and integration from numerous sensors was installed. 
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These sensors could sample and transpond data for further analysis of the interaction between 

structure and earth materials (Xia et al., 2012; Cha et al., 2017). The commonly monitored physical 

parameters such as acceleration, vibration, strain, and displacement could be obtained through all 

sensors (Spencer et al., 2019). However, traditional sensors like linear variable differential 

transformers (LVDT) need a stationary control point for installing or direct contact with the 

structure, which would make the installation process arduous on site (Y. Xu & Brownjohn, 2018). 

Besides, when it came to large-scale infrastructure, a dense arrangement of all sensors would 

increase the cost and installing time.  

To partially replace these contact sensors, a non-contact data sampling method based on a vision 

capture technique has been implemented in geotechnical engineering. In the 1990s, digital image 

correlation (DIC) has been applied in a geotechnical model test for soil deformation analysis 

(Adrian, 1991). From then on, DIC was widely adopted in geotechnical engineering (Stanier et al., 

2016) and mining engineering (Y. Huang et al., 2017) during the past decades. Moreover, image 

processing techniques (IPTs) were adopted by many scholars for direct or indirect measurements 

of soil properties. Mora et al. (1998) utilized IPTs to obtain the particle size distribution (PSD) of 

coarse aggregates. Xu et al. (2008) developed a digital image processing technique to obtain the 

mesostructured of the soil-rock mixture and the processed image had been imported into finite 

element model software as the particle shape. Due to the common features, (e.g., similar color, 

shape, pattern or boundary) of the objects in a certain image, the aforementioned methods 

employed pixel matrix algorithms more or less (e.g., threshold segmentation, image enhancement, 

image filtering, etc.) to achieve the goal of highlight desired objects (J. Chen et al., 2021). However, 

as the need for complex feature extraction grows, feature selection has become critical tough for 

algorithm engineering to come up with an algorithm that could meet the requirement for keeping 

all features and maintaining a high accuracy (Li et al., 2020). Besides, most traditional IPTs were 

only effective for specific engineer scenarios (Zhou et al., 2017). Therefore, a generalized image 

feature extraction and processing system shall be introduced to geoengineering. 

With the advancement of computer science, more IPTs involved with computer vision and 

artificial intelligence were developed and applied in geotechnical, environmental, and mining 

engineering. The difference between these terminologies based on input and output format could 

be found in Fig.1-2. However, no strict boundary is set among all four categories. 
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Fig. 1-2 The relationship between digital image processing, computer graphics, computer 

vision and artificial intelligence. (adapted from (Srivastava et al., 2021))  

Specifically, Artificial Intelligence (AI), Machine Learning (ML), Deep Learning (DL) and 

Computer Vision (CV) have an inclusion relationship as shown in Fig. 1-3. AI is a broad computer 

science field which devotes to making the machine have the ability to communicate, learn, and 

solve problems like humans. The ultimate target is machine could have their intelligence. ML is a 

part of the AI field, and ML involves many statistical algorithms that enable the machine to learn 

from data. However, human has to determine what algorithm shall be used and what feature to be 

characterized. Deep learning is a machine learning technique but more like how human brains act 

when encountering new tasks. The algorithm will try to find the intrinsic rules under complex 

situations and summarize them for future usage. Moreover, it can be understood as a multi-layer 

neural network that determines what feature to be selected and what decision should be 

made(Zhang et al., 2021).  
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Fig. 1-3 Venn diagram representing the relationships between AI, ML, DL and CV(Adapted 

from Goodfellow et al., 2016). 

1.3.1.2 Deep learning in geotechnical engineering 

With the development of deep learning, more algorithms have been proven effective and 

efficient in multi-engineering applications such as structural health monitoring, traffic monitoring, 

infrastructure inspection, etc (Zhang et al., 2021b). The main functions of these deep learning 

algorithms include one or multiple of classification, segmentation, data processing, prediction, etc. 

 

Classification 

Machairas et al., (2020) trained a CNN model to identify five different sand particle shapes 

using a dataset consisting of over 50,000 images. The study could benefit the quick soil 

classification on-site. Kumar et al., (2020) compared the classification results of liquefaction from 

both deep learning and emotional neural network (EmBP) based on the CPT data. Kim & Yun, 

(2021) evaluated three CNN backbones performances in the sand classification test. The Inception 

V3+ model showed the accuracy of 98.24%. Xu et al., (2022) proposed an intelligent lithology 

identification algorithm for classifying 30 rock types from three categories. A rock-type dataset 

with 14,950 images was prepared and seven deep learning classification backbones were evaluated 

to find the most efficiency one.  
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Segmentation 

Zhao et al., (2021) integrated a deep learning based tunnel leakage area instance segmentation 

and tunnel inspection equipment to achieve the shield tunnel inspection. The leakage location and 

area could be obtained from the algorithm. The Mask R-CNN algorithm achieves high accuracy 

in the task. Huang et al., (2022) adopted the Mask R-CNN algorithm to segment thin concrete 

cracks within the shield tunnel lining images. B. Kim & Cho, (2020) developed a multiple concrete 

damage instance segmentation system that could segment crack, rebar exposure, spalling, and 

efforescence with high accuracy. The DeepLabV3+ algorithm was trained by Chen et al., (2020) 

to segment and quantify the weak interlayers in a rock tunnel face. The segmentation with pixel-

level accuracy could be implemented on-site.  

 

Prediction 

Traditional numerical analysis methods adopted in the geotechnical domain mainly involved 

fast Lagrangian analysis, Gao et al., (2020) established a fully convolutional neural network (FCN) 

to predict the in-site stress for a strain-softening model. The algorithm presented superior 

calculation efficiency and accuracy. Feng et al. (2021) proposed a deep belief network model to 

predict tunnel boring machines (TBM) performance with Field Penetration Index (FPI) using a 

pre-collected continuous record of boring parameters. The model prediction of FPI agreed well 

with historical data. Yang et al., (2019) built a dynamic prediction model using long short-term 

memory neural network (LSTM) for landslide displacement prediction. The classical prediction 

method using the SVM model was used as a benchmark to compare the prediction results. The 

LSTM model achieves an accurate prediction of the slow and step-wise deformation periods which 

had a great fitness with the field monitor data.  

1.3.2 Structure from Motion (SfM) 

Structure from Motion (SfM) photogrammetry could generate multi-scale three-dimensional 

(3D) models using overlapping two-dimensional (2D) images obtained from conventional optical 

cameras (including DLSR, smartphones, sports cameras, etc.)(Eltner & Sofia, 2020; Iglhaut et al., 

2019).  
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1.3.2.1 The development of Structure from Motion (SfM) 

The development of Structure from Motion (SfM) benefits from both photogrammetry and 

computer vision techniques (Pierrot Deseilligny & Clery, 2012). The first paper introduced a 3D 

reconstruction of a static scene from a series of dense sequence images and was published by 

Bolles et al. (1987). Later, with the development of computer vision, automatic feature-matching 

algorithms were proposed to increase the efficiency of feature extraction(Harris & Stephens, 1988). 

The method has been adapted and consummated by Snavely et al. (2008). Until now, with more 

powerful computer and camera systems, more attention has been applied to how to utilize the 3D 

reconstruction model and obtain more information from the model. While at early stages, more 

focus has been placed on how to improve the accuracy of the 3D model(Eltner & Sofia, 2020). 

As the requirement of large-scale high-resolution topography maps of the soars, SfM 

photogrammetry has been widely adopted to replace traditional aerial photogrammetry and laser 

scanning based on the following merits: 

(1) Cost 

The commonly adopted 3D scanning device ranging from their scanning capability (airborne 

LiDAR> terrestrial laser scanner>portable laser scanner>micro-CT) usually requires a high 

amount of investment, which could be at least 10,000 dollars. However, with the popularity of 

consumer unmanned aerial vehicles (UAVs) like DJI, the price of a set of SfM equipment could 

be lowered to about 2000~5000 dollars.  

(2) Update frequency 

Compared with the cost of hiring a professional airborne LIDAR team to finish a large area of 

topographic survey, the limitation in funding could always support the few times of the survey. If 

the team is equipped with their UAVs, they can update the survey several times even within a day.  

(3) Accessibility  

As mentioned in the cost section, the huge investment could hinder many small companies or 

research groups to access that equipment, while SfM has fewer requirements. A drone pilot license 

authorized by FAA, a drone, and even a smartphone could help you to finish a survey and generate 

the 3D model you need. Furthermore, the availability of affordable or free SfM and post-

processing software has made 3D models much easier to obtain. Commercial software such as 

Agisoft, Autodesk ReCap, and Pix4D could be accessed. Open-source software such as OpenMVG, 
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Open Drone Map, MicMac, and VisualSFM could also achieve great 3D models. Post-processing 

software including CloudCompare and Meshlab has always been updated to finish 3D data editing. 

1.3.2.2 Theoretical Principles of Structure from Motion (SfM) 

SfM theory 

Traditional stereophotogrammetry is created from the analogy of the binocular human vision 

which allows us to feel the depth and relationships between objects. Especially, when the object 

emerges in view range of both eyes. The brain can utilize the tiny discrepancy to judge the distance 

and depth. For example, the fixation point (black point in Fig. 1-4) projects the same location in 

our eyes but the green and the blue point will have different projection points in our eyes. The 

difference between df and dn helps us to determine that the blue point is closer than the green 

point(Iglhaut et al., 2019). Therefore, the depth of the object can be calculated if the relative 

position of these two points is known.  

 
Fig. 1-4 The illustration of binocular disparity 

The depth, volume, and other 3D characters can be obtained if a single viewing point if the 

camera position or the object position is moving(Bolles et al., 1987; Ullman, 1979). In Fig. 1-5, 

there are in total n red points Xj (J=1,…,n) in the 3D space. When the red point Xj is shot by the 

same camera from m different locations, these or part of these red points will become pixels with 

only 2 dimensions in the images. And it is straightforward that the coordinates of red points will 

be transformed into pixel coordinates xij (i=1,…,m; j=1,…n) via the formula xij=MiXj. By knowing 



16 

 

the camera parameters such as intrinsic parameter matrix K and extrinsic parameters R and t, the 

coordinates of Xj could be solved, and thus the point cloud of the object can be reconstructed. This 

is how SfM is regraded better compared with traditional softcopy photogrammetric methods, 

which require the 3-D location and pose of the camera, or ground control points(Westoby et al., 

2012).  

 

Fig. 1-5 Simplified theory of Structure from Motion (SfM) 

SfM workflow 

Usually, the SfM photogrammetry is referred to a whole workflow, from images to a dense 

point cloud file. But, to be more accurate, the SfM process indicates the process using camera 

parameters to calculate space coordinates of a limited number of match points (key points) and 

generate a sparse point cloud. The process can be illustrated by the process mentioned in Fig. 1-5, 

where red points will be generated. 

However, based on the needs of different projects and purposes, the SfM process can be stopped 

at the sparse point cloud stage or continue to a full process until more results can be outputted. 

Though the sparse point cloud could only demonstrate a highly overlapped area or high contrast 

area, the sparse point cloud processing will save lots of computation force when a rea-time or high 

FPS condition must be satisfied (Korchev et al., 2013). Generally, a multi-view stereo (MVS) 

algorithm will be applied to the pre-generated sparse point cloud and a dense point cloud (which 
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might include millions of points) could be exported. Thus, the whole process is named by SfM-

MVS and could be found in Fig. 1-6.  

 

Fig. 1-6 Schematic workflow of the SfM-MVS process resulting in a dense point cloud from 

image sets (Adapted from Iglhaut et al., 2019) 

The first section of the whole work flow will be key points extraction and descriptors generation. 

The high contrast points or special texture points in different images will be identified and matched. 

Snavely (2008) proposed a popular object recognition method, Scale Invariant Feature Transform 

(SIFT) to identify all possible features in each image. The number of key points relies on the image 

texture and resolution, thus a rich-detailed image will result in more key points and more details 

in the point cloud(Westoby et al., 2012). A feature descriptor is an algorithm that takes an image 

and outputs feature descriptors/feature vectors. Feature descriptors encode interesting information 

into a series of numbers and act as a sort of numerical "fingerprint" that can be used to differentiate 

one feature from another. Ideally, this information would be invariant under image transformation 

(such as different perspectives and different conditions).  

Then it comes to the core part of the workflow, where the SfM algorithm will implement bundle 

adjustments to estimate the camera position and angles. After that, a sparse point cloud in space 
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(three dimensions) could be computed. In this procedure, approximate nearest neighbor and 

Random Sample Consensus (RANSAC) algorithms are often deployed for point cloud 

reconstruction. Finally, based on the requirement of the project, ground control points (GCPs) from 

manually selected points or GPS systems would be added to resize the model. In this stage, a model 

created in a relative coordinate system will be transformed into an absolute coordinate 

system(Horn, 1987). Thus, measurements like length, depth, and volume could be meaningful and 

dimensional. 

The next procedure involves image clustering, where images are divided into small and 

manageable subsets. The clustering processing is vital for improving computing efficiency and 

viability. Later, the Clustering View for Multi-view Stereo (CMVS or MVS in short) (Furukawa 

& Ponce, 2007)is adopted to increase the point cloud density, usually, the amount of point cloud 

will gain about 2 orders of the magnitude(Westoby et al., 2012). Subsequent processing steps (for 

aerial surveys) typically involve the derivation of a digital surface model (DSM) and an 

orthomosaic map.  

 

The applications of SfM in geotechnical engineering 

As a cost-effective photogrammetric survey method, Structure from Motion (SfM) is used in 

many applications, such as fluvial morphology, volcano variations, landslide displacement, and 

coastal recession (Cucchiaro et al., 2018). Furthermore, the SfM method attracts the interest of 

geotechnical engineering due to its high accuracy, efficiency, and visual ability, which has been 

applied in the following domains: 

 

Slope 

Ongpaporn et al. (2022) utilize an unmanned aerial vehicle (UAV) photogrammetry method to 

finish the SfM reconstruction of a bio-engineered slope. Context Capture software alongside a 

Structure from Motion (SfM) technique was employed to generate the mesh file of the slope. The 

mesh file with high-resolution topography information of the slope was later imported into a 3D 

finite element analysis software (Plaxis 3D). Compared with the simplified block model, the high-

accuracy topography model can reflect the real reaction of the slope stability as much as possible. 

Riquelme et al. (2016) used both SfM and laser scanning data to calculate the Slope Mass Rating 

(SMR) for the slope of the highway ramp. The errors analysis when image qualities are great, the 
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SfM achieved a satisfied result compared with the expensive laser scanning equipment. However, 

the camera parameters, image numbers, image quality, acquisition strategy, and ground control 

points will somehow influence the quality of the point cloud. 

 

Settlement/Displacement 

Brzeziński et al. (2022) carried out a field test for sand compacting monitoring using SfM 

method. By comparing the result from both traditional optical level device and SfM, the SfM 

method provide excellent accuracy and a wide range of data. The bulk density change can be 

calculated to evaluate the compaction result. Piermattei et al. (2016) adopted the ground-based 

SfM-MVS approach for calculating the geodetic mass of a glacier and monitoring the displacement 

of an active rock glacier located in the eastern Italian Alps. In this study, airborne laser scanning 

data has been selected as the benchmark to estimate the accuracy of the digital elevation model 

(DEM) created by SfM-MVS. The stand deviation of SfM-MVS DEM model was about 0.42m, 

while the laser scanning can achieve 0.03m. 

 

Coastal problem 

Wernette et al. (2022) created an SfM model of a 1.5 km section of coastal bluffs with partially 

GPS-tagged images. The images were taken by consumer-level digital cameras and mobile phones. 

Due to the near-vertical cliffs or bluff faces, traditional LIDAR device was found very difficult to 

establish a successful model. Pagán et al. (2019) compared the SfM model of the coastal dune with 

GIS historical data to estimate how the dune ecosystem related to coastal erosion. A 

comprehensive analysis including surface difference, cross movements, shoreline evolution, and 

dune-beach variation was finished. The research proved the efficiency and accuracy of modeling 

a complex and variable coastal environment. 

 

Tunnel 

García-Luna et al. (2019) verified the validity of Structure from Motion in discontinuity sets in 

tunnel face under construction. The 3D point cloud was imported into Discontinuity Set Extractor 

(DSE), an open-source software to semi-automatically identify points that form planes within an 

unorganized 3D point cloud. The number of discontinuities has been compared with manual 

measurement and the results proved to be the same. The orientation difference was less than 10 
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degrees, which was within a reasonable error range. Xue et al. (2021) developed a novel tunnel 

inspection method for leakage detection in a 3D manner. The SfM method was adopted to capture 

the 3D reconstruction model of the target tunnel. The tube shape mesh file of the tunnel was 

expanded into a rectangular shape, thus the true size of the leakage areas could be detected and 

segmented with an actual area.  Chaiyasarn et al., (2016) proposed a tunnel inspection system 

utilizing SfM to generate a non-distorted tunnel surface. The dense point cloud obtained from SfM 

was later processed by an SVM classification algorithm to remove noise points. Moreover, a 

calibrated mosaic image will be prepared for the engineer to evaluate the tunnel condition. 

 

Laboratory experiment 

When a physical model experiment is designed in the laboratory, the sensors from contact 

measurement will inevitably disturb the status of the target area due to size effect and vibration. 

Moreover, the contact measurement may cost time, and the target object status may be subjected 

to change during measurement (Wu et al., 2020). However, non-contact measurements such as 3D 

reconstruction can digitize the model and finish the required measurements on computers. Wu et 

al. (2020) designed an in-laboratory landslide dam to monitor the topography of the dam formation 

and landslide process. The landslide dam-forming part was 4.6 m long, 0.3 m wide, and 0.2 m high 

and is made of plexiglass. A GoPro sports camera was adopted to finish the 3D reconstruction 

process with the help of Agisoft PhotoScan. The model accuracy of the slope was less than 0.2mm.  
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CHAPTER 2 Effects of Biochar-Amended Alkali-Activated Slag on 

Stabilization of Coral Sand  

2.1 Introduction 

Coral sands typically originate from coral reefs and encrusting coralline algae near the shoreline 

(Lv et al., 2017). The coral sand grains are generally angular or sub-angular and have small cavities 

on their surfaces, resulting in a relatively loose geological deposit(Coop, 1990). Compared with 

silica sand, coral sand with a high void ratio possesses different and usually weaker mechanical 

and geotechnical properties. Morioka and Nicholson (2000) found that silica sand had 1.5-2 times 

greater tip resistance than coral sand from the cone penetration test. Dijkstra et al., (2013) reported 

that footings constructed on coral sand resulted in a significant reduction in bearing capacity 

compared with silica sand at identical relative density. Lv et al., (2017) reported that the shear 

creeps of coral sand was 10 times greater than that of silica sand. The inferior engineering 

performance of coral sand is attributed to its high compressibility and particle crushability (S.-H. 

He et al., 2020). With continuing development and exploitation activities onshore and offshore, it 

is expected that more infrastructure will be built on coral sand, signifying the urgency and 

importance of understanding the mechanical behavior of coral sand and identifying suitable ground 

improvement methods when deemed necessary (X. Z. Wang et al., 2011). 

Chemical stabilization is one of the most commonly used methods to improve the mechanical 

performance of sand. Among various types of binders, alkali-activated slag (AAS) has become 

increasingly popular owing to its high early strength, superior durability in an acidic environment, 

stronger cement-aggregate interface, and ability to maintain stability in extremely high 

temperatures (Bakharev et al., 2002). AAS utilizes a metallurgical slag as the main precursor, 

typically ground granulated blast furnace slag (GGBS) and an alkaline solution to trigger the 

hydration and polymerization process, which produces cementitious products such as calcium 

(aluminum-) silicate hydrate (C-(A)-S-H), sodium aluminum silicate hydrates (N-A-S-H), and 

Mg-Al layered double hydroxides (LDH) (Myers et al., 2017).  

AAS has been proposed as a sustainable alternative to Ordinary Portland cement (OPC) owing 

to its simple manufacturing procedures, lower CO2 emissions, and superior durability performance 

(Behfarnia & Rostami, 2017). Therefore, it is envisaged that AAS could serve as a promising 

replacement of OPC for soil chemical stabilization, particularly under aggressive chemical 
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environments such as soils subject to acid and sulfate exposures (Beltrame et al., 2020). In the past 

decade, AAS has been increasingly investigated as a binder to stabilize various soil types. For 

instance, Higgins (2005) summarized the research related to GGBS and lime for cohesive soil 

stabilization in the UK and pointed out GGBS with lime showed promising long-term strength 

compared with OPC. Oti et al. (2009) utilized GGBS, lime, and Lower Oxford Clay to manufacture 

unfired masonry bricks. The environmental impact and cost were reduced significantly. These 

bricks had higher strength and volume stability than those manufactured with OPC. Du et al. (2017) 

utilized GGBS activated by sodium silicate and calcium carbide residue to stabilize low plasticity 

clay and found that the stabilized clay had higher permeability, water absorption capacity, and 

compressive strength over those treated by OPC. Rabbani et al. (2012) adopted GGBS and lime to 

stabilize desert sand containing abundant sulfate ions and observed significant improvement in 

unconfined compressive strength and CBR. Yi et al. (2015) selected MgO as the activator for 

GGBS to stabilize silty sand and found that the hydration products such as hydrotalcite and C-S-

H could fill voids between sand particles and increase soil strength. In addition, Gu et al. (2015) 

showed that hydration reactions, pozzolanic processes, cation exchange, and particle 

agglomeration were the main mechanisms of soil stabilization by AAS. Zhang et al. (2018) found 

that when stabilizing marine clay, GGBS mixes improved the water-holding and contaminant-

encapsulating properties compared to OPC-only mixes. As a novel binder, its long-term in-service 

performance still needs to be verified. The high dry shrinkage level and brittle failure are two 

major known drawbacks of AAS. To overcome these and make AAS adoptable to engineering 

applications widely, researchers have added fibers, chemicals, and nanoparticles as additives to 

increase the flexibility and ductility of AAS, which helped to restrain and control its crack 

development (Song et al., 2019). However, little research has been found in coral sand stabilization 

utilizing AAS material.  

Biochar is produced from the pyrolysis of waste biomass such as agricultural (e.g. waste wood, 

rice husk, and corn cobs) and other organic wastes (e.g., manure/animal waste, and wastewater 

sludge) under oxygen-deficient conditions (Xie et al., 2015). Therefore, biochar has a low cost of 

about $2.5 per kilogram (Jin et al., 2021). Biochar properties can vary widely, depending on the 

feedstock and pyrolysis conditions (temperature, residence time, and post-treatment). Upon 

pyrolysis, a highly porous inner structure is formed and thus biochar possesses a high specific 

surface area and large cations exchange capacity (CEC) (Batista et al., 2018). The carbon 
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accumulated in the biomass is sequestered into the biochar in a stable state and will not be degraded 

in hundreds or even thousands of years, making it promising for carbon sequestration (Xie et al., 

2016). Biochar has been widely applied in various applications in agricultural and environmental 

engineering, especially soil and water quality improvement, due to its excellent adsorption 

capacity towards various contaminants (Kua et al., 2019; Xie et al., 2015). More recently, biochar 

has been used as an additive in cementitious construction materials to improve their engineering 

performance. Choi et al. (2012) reported that high water absorption and retention capacity of 

biochar reduced the local water/cement ratio, thus accelerating the curing process of OPC and 

minimizing the generation of capillary pores due to water evaporation.  Gupta and Kua (2018, 

2019) amended OPC with biochar as a lightweight additive to increase its air content and reduce 

the fresh density. In the meantime, the compressive strength and ductility were improved by 10-

20% with 1-2% (w/w) biochar. Restuccia et al. (2017) analyzed the fracture development in 

cementitious composite mixed with biochar and concluded that biochar could arrest crack 

expansion and reroute crack path, serving as a local reinforcement. Mo et al. (2019) reported that 

the internal curing effect from biochar could mitigate the autogenous shrinkage of cement without 

compromising the compressive strength. These studies have proved that biochar has a high 

adsorption capacity for ions and superior water holding capacity, which could improve the binder 

strength and mitigate crack development.  

While biochar has been studied as an additive in OPC-based construction materials, there has 

been no work regarding its effects on the properties of AAS. Considering the characteristics of 

both biochar and AAS, it is hypothesized that biochar could act as an internal curing agent to 

reduce the shrinkage of AAS resulting from water reserved in biochar and improve its strength and 

cracking resistance. It may also further enhance the durability of AAS against chemical attacks 

such as sulfate. In this study, a comprehensive experimental program was devised to study and 

validate the synergy between biochar and AAS, which was used to stabilize coral sand, which has 

not been reported by other researchers. The strength, water holding capacity, durability, 

physicochemical properties, and microstructural characteristics of the stabilized coral sand were 

thoroughly investigated.  
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2.2 Materials and Methodologies 

2.2.1 Materials 

2.2.1.1 Coral sand  

The coral sand used in this study was purchased from the PRO-PAK company. It contained 

more than 99.95% calcium carbonate and had a specific gravity of 2.81. The grain size distribution 

curve is shown in Fig. 2-1 with Cc=0.88 and Cu=2.73. It was classified as a poorly graded sand 

(SP) according to ASTM D2487 (2017). The sand was initially adjusted to an initial 5% moisture 

content to simulate the typical moist condition of natural coral sand in the coastal area (Han et al., 

2020). 

2.2.1.2 GGBS and Lime 

The chemical composition of GGBS is shown in Table 2-1. The mass ratio between 

(CaO+MgO) and (SiO2+Al2O3)) is 0.81 and that between (CaO+MgO+ Al2O3) and (SiO2+TiO2) 

is 1.55. The GGBS was classified as a neutral slag. Commercial hydrated lime produced by 

Graymont Western was selected as the alkaline activator for GGBS, which contained 71 wt% 

calcium oxide (CaO).  

 

Fig. 2-1 Grain size distribution curve of the coral sand 
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Table 2-1 Chemical compositions of GGBS determined by XRF 

Composition CaO SiO2 Al2O3 MgO Fe2O3 SO3 K2O TiO2 Ignition 
Loss 

Content (%) 32.32 35.69 15.83 9.46 0.83 1.11 1.09 1.58 0.70 
 

2.2.1.3 Biochar  

The biochar manufactured by Pacific Biochar (Santa Rosa, California) was selected in the 

current study. It was smoldered at a temperature of 1400 °F from the raw residue of pine and cedar 

collected in North California. It had a density of 156 kg/m3, an initial pH of 10.3, and a CEC value 

of 21.5 meq/100g. Its major constituent elements were calcium, potassium, phosphorus, and 

magnesium. All biochar particles were pre-sieved to only keep those retained between No.16 (1.19 

mm) and No. 20 (0.841 mm) sieves. Before mixing with AAS, biochar was soaked in de-aired 

distilled water until a fully saturated status was reached. The weight of water fully saturated by 

biochar was 8.34 times of its dry weight, due to the vast volume of internal pores (Batista et al., 

2018). 

2.2.2 Methodologies  

2.2.2.1 Mix Design 

A total of six biochar-amended AAS mixes were prepared, as shown in Table 2-2. The binder 

was composed of three components: GGBS, hydration lime, and biochar. The binder content, 

which was defined as the mass ratio between the binder and dry sand, was fixed at 15%. The 

biochar content, defined as the mass ratio between biochar and sand, was 0, 0.075%, 0.149%, 

0.222%, 0.294% and 0.366%. When converted into biochar-binder ratio, it was 0, 0.5%, 1%, 1.5%, 

2%, and 2.5%. However, as an additive, the upper limit of the biochar was set as 0.8% to the weight 

of sand during the pilot experiment. The water-to-binder ratio was set as 0.733 to ensure a uniform 

mixture state. It should be noted that the water-to-binder ratio was calculated based on the water 

in the moist sand, pre-saturated biochar, and that added separately during mixing.  

2.2.2.2 Sample Preparation 

GGBS and hydrated lime were mixed thoroughly with the moist sand. Then, water together 

with saturated biochar was added to the AAS-sand mixture and agitated until a uniform state was 

reached. This uniform paste was then cast in three layers into PVC molds with an internal diameter 
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of 51 mm and a height of 102 mm. Upon completion, the top and bottom surfaces were sealed with 

3 layers of polyvinyl films to minimize moisture evaporation. All samples were cured at 20 ± 2 °C 

and relative humidity of 60% to designated curing periods (i.e., 1, 3, 7, 14, 28, 60, and 90 days). 

The long curing periods of 60 and 90 days were selected based on previous studies (Gu et al., 

2015). The related humidity was set to simulate the local climate condition in Hawaii, where the 

humidity is approximately 60% in the dry season. 

Table 2-2 Mix proportions of the AAS-biochar stabilized coral sand 

Composition Proportion 

Binder 1 

Binder : sand 15% 
GGBS : hydrated lime 4:1 

Biochar : binder 0, 0.5%, 1%, 1.5%, 2%, 2.5% 
Biochar : sand 0, 0.075%, 0.149%, 0.222%, 0.294%, 0.366% 

Water 

water : sand 2 5% (before mixing) 
water : sand 3 11% (after mixing) 

Water-binder ratio 4 0.733 
Water in biochar : biochar 8.34 

1 binder is composed of GGBS, hydrated lime and biochar in different proportions, and the amount of binder in 

the sand was fixed at 15%. 
2 Initial moisture content of sand before mixed with the binder 
3 Moisture content of sand immediately after mixed with the binder and separately added water  
4 The water amount used to calculate water-binder ratio includes that in initial moist sand, pre-saturated by biochar, 

and added separately during mixing. 

 

2.2.2.3 Testing Methods 

The experimental program included unconfined compression tests (UCTs), moisture content 

tests, pH tests, sulfate resistance tests, wet-dry cycle tests, X-ray diffraction (XRD) analysis, 

optical microscope observation, and scanning electron microscopy-energy dispersive X-ray 

spectroscopy analysis (SEM-EDS). The detailed test methods conducted on the samples have been 

listed in Table 2-3. 

The UCTs were performed using a LoadTrac III frame system built and calibrated by Geocomp 

(Acton, MA). The loading rate was 1.3 mm/min based on ASTM D1633 (2017). Samples were 

tested in triplicate. Unconfined compressive strength (UCS), secant modulus, and strain at failure 

were obtained based on UCT results. 
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Table 2-3 Test methods details conducted on the samples 

Tests Standard Device 
Unconfined compression tests (UCTs) ASTM D1633 LoadTrac III 

Moisture content ASTM D2216  
pH tests ASTM D4972  

Sulfate resistance tests ASTM C1012/C1012M  
Wet-dry cycle tests ASTM D559/D559M  

X-ray diffraction (XRD) - Bruker D8 X-ray 
diffractometer 

Scanning electron microscopy energy 
dispersive X-ray spectroscopy analysis  

(SEM-EDS) 
- JSM- 5900LV 

 

Moisture content and soil pH were measured based on ASTM D2216 (2019) and ASTM D4972 

(2019) respectively. Additional samples prepared and cured under the same condition as those for 

UCT were used for moisture content and soil pH measurement. Specifically, the soil was passed 

through the No.10 sieve before pH measurement. 

The sulfate resistance of stabilized sand was quantified according to ASTM C1012 / C1012M, 

(2018). The samples, which were prepared the same way as those for UCT, were cured at 20±2 °C 

and 60% relative humidity for 1 day and then demolded for the sulfate resistance tests to adapt to 

quick construction in coastal infrastructure. The demolded soil specimens were submerged in 5% 

Na2SO4 (w/w) solution for 3, 7, and 14 days. The Na2SO4 solution was replaced periodically to 

maintain its concentration (N. J. Jiang et al., 2018). Upon completion of soaking, samples were 

flushed with distilled water to get rid of residue Na2SO4 solution and then dried with a paper towel 

for 30 min. Finally, the volume of the soaked specimens and UCS were measured.  

The wet-dry tests were conducted according to ASTM D599 (2015). Samples were prepared 

and cured in the same way as those in the sulfate resistance test. Upon completion of curing, the 

samples were subjected to 3, 7, and 14 wet-dry cycles. One cycle included submersion in distilled 

water at 22 ℃ for 6 hours and then drying in an oven at 70 ℃ for 42 hours. It should be noted here 

that the, 14 wet-dry cycles were selected so that the test results could be compared with continuous 

curing for 28 days under normal curing conditions. After the completion of each cycle, the mass 

and size of the specimens were measured. Finally, after all wet-dry cycles were completed, the 

specimens were subjected to UCT. 
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The XRD tests on selected samples were performed using a Bruker D8 X-ray diffractometer. 

The samples were ground into powders using a micro-mill. The scanning range was 10-70° (2 

theta) and the scanning rate was set as 2°/min with a resolution of 0.02°/step. 

The SEM-EDS was conducted using a JSM- 5900LV Scanning Electron Microscope with an 

EDS detector. After UCT, stabilized sand sample of ~3cm×3cm×3cm was taken and preserved in 

ethanol followed by drying at 40 ℃ to terminate hydration reactions. Before the SEM observation, 

samples were further broken into 5 mm × 5 mm × 5 mm pieces and ready to load into the machine. 

No sputtering regime was applied to these samples. Since the samples were collected after UCS 

tests, the rough surface along the crack area would be effortless to spot under the SEM. The SEM-

EDS was conducted under an acceleration voltage of 15kV.  

After all tests were finished, the data was collected and a statistical analysis using SPSS was 

conducted. In this study, the biochar content and the curing time were listed as the independent 

variables. The dependent variables were all the results obtained from the aforementioned tests 

including UCS, secant modulus (E50), strain at failure, moisture content, pH value, UCS under 

sulphate attack, and UCS under wet and dry cycles. The coefficient of variation (CV) was selected 

to evaluate the repeatability of the experiment. The coefficient of variation results of all dependent 

variables was listed in Table 2-4. Though the E50, strain at failure and strength reduction under 

sulphate attack were larger than 20%, these parameters tended to have normal fluctuation even 

under a strictly controlled experiment condition. The repeatability of these experiments could be 

accepted. 

Table 2-4 The coefficient of variation (CV) of all dependent variables 

 UCS E50 Strain at 
failure 

Moisture 
content pH 

Strength 
reduction 

under sulphate 
attack 

UCS 
under 

wet and 
dry cycles 

CV range 
11.83% 

~ 
34.23% 

21.13% 
~ 

48.96% 

15.74% 
~ 

53.62% 

2.45% 
~ 

12.44% 

0.41% 
~ 

0.59% 

12.46% 
~ 

40.87% 

10.43% 
~ 

16.17% 
CV 

average 17.55 35.58% 29.79% 7.55% 0.57% 26.18% 13.85% 
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Besides, the one-way analysis of variance (ANOVA) was carried out at 5% level of significance 

for statistical analysis. When the p-value < 0.05, the independent variables were considered 

statistically significant. When the p-value < 0.001, the independent variables were considered 

statistically highly significant. The results were shown in Table 2-5.  

Table 2-5 The results of p-value from the one-way analysis of variance (ANOVA) 

 UCS E50 Strain at 
failure 

Moisture 
content pH 

Strength 
reduction 

under sulphate 
attack 

UCS 
under 

wet and dry 
cycles 

Biochar 3.75×10-7 

** 
3.20×10-6 

** 
4.40×10-2 

* 
5.17×10-13 

** 
4.88×10-17 

** 
5.18×10-14 

** 
4.82×10-4 

** 
Curing 
time 

1.23×10-33 

** 
5.85×10-15 

** 
8.80×10-5 

** 
7.07×10-57 

** 
2.43×10-32 

** 
1.42×10-26 

** 
1.88×10-16 

** 
*Statistically significant (p-value < 0.05) 

**Statistically highly significant (p-value < 0.001) 

2.3 Results 

2.3.1 Mechanical Performance 

2.3.1.1 UCS 

UCS, secant modulus (E50), and strain at failure of the stabilized coral sand were obtained from 

UCTs, which are shown in Figs. 2-2, 2-3 and 2-5. From the statistical results showed in Table 5, 

the biochar content and curing time had highly significant influence on the UCS since the p-value 

were much less than 0.001. In Fig. 2-2, it is shown that the UCS values ranged between 0.4 and 

3.0 MPa in most cases. Particularly, after 7 days of curing, all samples yielded UCS values larger 

than 1 MPa, meeting the minimum strength requirement for pavement foundation(Christopher et 

al., 2006). For comparison, OPC-stabilized sand with a similar binder content was reported to have 

UCS values between 0.5 and 2.5 MPa (Choobbasti & Kutanaei, 2017). The effect of biochar 

content on UCS varied for short-term (1-28 days) and long-term (60 and 90 days) samples. For 

short term samples, biochar showed little enhancement on the UCS. Instead, UCS values dropped 

slightly in most cases, indicating that the introduction of biochar weakened the sand-binder matrix. 

However, for samples cured for 60 and 90 days, the addition of a small amount (0.075% and 

0.149%) of biochar resulted in a remarkable improvement in UCS of more than 20%. Further 
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increase in biochar dosage cured for long periods resulted in UCS values equivalent to or slightly 

smaller than those of samples without biochar.  

 

 
Fig. 2-2 UCS of biochar-amended AAS stabilized coral sand 

2.3.1.2 Secant Modulus 

E50 is the secant modulus at 50% stress level and results under different tested conditions are 

shown in Fig. 2-3. From the ANOVA results shown in Table 5, the p-value demonstrated that the 

biochar content and curing time had a highly significant influence on E50. The E50 ranged between 

50 and 400 MPa for most cases in this study. For comparison, Marzano et al. (2009) applied 4% 

to 13% OPC to stabilized granular soil and found the secant modulus ranged from 70 to 210 MPa. 

Similar to the UCS results, E50 was not improved with the addition of biochar in samples cured for 

less than 28 days. In particular, more than 0.294% biochar dosage resulted in a dramatic loss of 

soil stiffness of at least 40%. Nevertheless, when samples were cured for longer than 60 days, a 

more than 70% increase in E50 was observed at 0.075% and 0.149% biochar content. At higher 

biochar content (0.294% and 0.366%), soil stiffness was about 20% smaller than soil without 

biochar at 60 days. However, as the curing time extended to 90 days, soil stiffness bounced back 

to 40% more than those without biochar.  
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Fig. 2-3 E50 of biochar-enhanced AAS stabilized coral sand 

In Fig. 2-4, UCS and E50 data from this study were correlated using Eq. (1): 

E50 = ηUCS                                          (1) 

where η is a dimensionless coefficient. The value of η varied from 60 to 300 for the biochar-

amended AAS stabilized coral sand in this study and Han et al. (2020). The result was higher than 

25 to 130 reported by Marzano et al. (2009), who applied similar OPC content to stabilize gravelly 

sand.  

2.3.1.3 Strain at Failure 

Strain at failure is an indicator of soil ductility Park (2011) and the results are shown in Fig. 2-

5. With the p-value less than 0.05, a significant correlation between the biochar content, curing 

time and strain at failure can be proved from the statistical results in Table 2-5. The values were 

between 0.5% and 2.0% for all samples tested in this study. Choobbasti et al. (2018) reported a 

similar range (1% to 2.5%) of sand stabilized by 14% binder containing OPC and nano-silica. For 

samples cured for short periods (1~28 days), the addition of biochar resulted in a larger strain at 

failure in most cases (22 out of 25). Particularly, at 1 day, the stabilized sand was still fresh and 

immature. Water served as a lubricant to increase the ductility of the sample (H. Wang et al., 2020). 

However, after a longer period (60 and 90 days), samples with 0.075-0.294% biochar displayed a 

reduced strain at failure compared with those without biochar. Only at the highest biochar dosage 

(0.366%), strain-at-failure increase.  
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Fig. 2-4 The relationship between UCS and E50 (15% binder content in the current study; 10% 

and 20% binder content in (Han et al., 2020)) 

 
Fig. 2-5 Strain at failure of biochar-amended AAS stabilized coral sand.  

From the UCT results, it could be concluded that the addition of a moderate amount of biochar 

was beneficial for strength and stiffness development in the long term. On the other hand, a high 

biochar content could be detrimental to soil strength and stiffness particularly for those cured for 

a short period. Moreover, adding biochar to AAS stabilized coral sand in general could improve 
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internal curing agent, mechanically weak point, and micro-reinforcer. The mechanisms will be 

discussed in detail in the “Discussion” section. 

 

2.3.2 Physicochemical Properties 

2.3.2.1 Moisture Content 

The moisture contents of the coral sand mixtures at different curing time are shown in Fig. 2-

6. The statistical results from Table 2-5 showed that both biochar content and curing time had a 

significant influence on the moisture content during the designed experiment. Based on the mix 

design (see Table 2-2), all samples had an identical initial moisture content, which was 11% based 

on the dry weight of coral sand. As the biochar was initially fully saturated before mixing, part of 

the water in the stabilized soil was present freely in the soil pore space and part was absorbed by 

the biochar. During the curing period, gradual water loss was observed in all cases, which was 

primarily dictated by two factors: (1) AAS hydration reactions and (2) water evaporation. For 

samples cured for 3, 7 and 14 days, the moisture content was between 5.8% and 7.5%. There was 

a slight increase (0.3% to 1.3%) in moisture content for samples with higher biochar dosages. 

Within the initial 14 days of curing, AAS hydration reactions were still actively undergoing and 

water evaporation was not significant in the short term attributed to the 3-layer polyvinyl film 

sealing, thus the water loss was mostly due to hydration reactions (Hoyos-Montilla et al., 2019). 

Based on moisture content variations, it could be inferred that hydration reaction developed faster 

in samples without or with lower content of biochar, which was thought to be attributed to more 

free water in soil pore spaces that was immediately available for hydration reactions. For longer 

curing periods (28~90 days), the moisture content increased more substantially with increasing 

biochar content. The sample with the highest biochar content (0.366%) had 22-36% more water 

than those without biochar. In the long term, hydration reactions slowed down and thus the 

dominance of water loss due to hydration reaction was overtaken by water evaporation. The long-

term moisture content results clearly showed that the superior water holding capacity of biochar 

contributed to the higher moisture content at the curing end, which was also reported by Sun and 

Lu (2014). 
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Fig. 2-6 Moisture content of biochar-amended AAS stabilized coral sand 

2.3.2.2 Soil pH 

Soil pH was predominantly determined by the soil pore solution chemistry (Y. J. Du et al., 2014, 

2020). In this study, pore solution chemistry was controlled by two competing processes: 

dissolution of hydrated lime/GGBS in an alkaline environment and AAS hydration reactions. The 

former led to pH rise to the equilibrium value of 12.5. The latter brought down alkalinity due to 

the utilization of hydrated lime as a reactant for AAS hydration reactions (Y.-J. Du et al., 2017; N. 

J. Jiang et al., 2018). From Table 5, the ANOVA statistical results showed that the pH was highly 

significantly related to biochar content and curing time, since the p-values were both less than 

0.001. Fig. 2-7 shows the evolution of soil pH with time at different biochar contents. For all cases 

tested in this study, the soil pH dropped from above 12.2 to below 12.0 during the initial 14 days. 

Then, the stabilized sand gradually regained alkalinity with time and the ultimate pH value after 

90 days of curing reached 12.2-12.5. During the first 14 days of curing, as hydrated lime provided 

free calcium and hydroxide ions in the AAS system, the chemical bonds like Ca-O, Si-O, and Al-

O in GGBS were broken under the alkaline environment. The resulting calcium-rich environment 

suppressed the further dissolution of lime due to solubility equilibrium. Meanwhile, the calcium-
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rich environment increased the tendency of aluminum hydrolysis, and therefore more hydroxide 

ions in the solution were bonded with aluminum to form tetrahydroxoaluminate ions (C. Li et al., 

2010). The pH declined during the aluminum hydrolysis process. After 14 days of curing, with the 

alkali-activated reaction going on, more calcium and aluminum ions were bonded into C-(A)-S-H 

network. Hence, the unreacted lime started to dissolve gradually and raised the soil pH value.  

 

 
Fig. 2-7 The relationship between the pH of stabilized coral sand and curing time 

Furthermore, the addition of biochar was found to elevate pH in most cases. This could help 

maintain the stability of hydration products (e.g., C-S-H) in AAS stabilized sand and improve its 

acid resistance (Y. J. Du et al., 2014, 2020). While the pH elevation was insignificant at low 

biochar content (i.e., 0.075%), an increase of more than 0.1 unit was observed in cases with high 

biochar contents (i.e., 0.222%, 0.294% and 0.366%) during the entire curing period. It was likely 

attributed to the carboxyl group on the biochar surface that increased the soil pH (Zhu et al., 2017).  

 

2.3.3 Durability Assessment 

2.3.3.1 Sulfate attack 

One of the advantages of AAS compared with OPC is its superior resistance to sulfate attack, 

which is due to the absence of free portlandite (i.e., Ca(OH)2) in typical AAS and its excellent 
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impermeability (Komljenović et al., 2013). However, previous studies also reported the 

detrimental effect of sulfate ions on the strength of AAS paste or concrete (Bakharev et al., 2002). 

In the current study, the strength reduction percentage (SRP) of stabilized coral sand in the sulfate 

resistance tests is shown in Fig. 2-8 (a). From the ANOVA statistical results in Table 5, the biochar 

content and curing time had been proved significant on the influence of strength reduction 

percentage. The SRP was calculated based on Eq. 2, where SN represents strength under normal 

curing and SS represents strength under sulfate attack: 

 = 100%SN SSSRP
SN
−

×  (2) 

It can be seen that the strength reduction due to deleterious sulfate ions occurred in samples 

both with and without biochar. More specifically, after 3 and 7 days of soaking, the strength was 

reduced by at least 40% and 85%, respectively. After 14 days of soaking, strength was almost 

completely lost. The observations seemed to contradict with reported excellent sulfate resistance 

of AAS by other researchers (Bakharev et al., 2003; Komljenović et al., 2013).  

The contradiction was mainly due to three reasons: Firstly, all samples were only cured for 1 

day before being subjected to the sulfate attack tests. This was to simulate the rapid exposure to 

seawater after the stabilization of coral sand in coastal areas. However, in most previous studies 

on sulfate resistance of stabilized soil, the curing time was 28 days. This difference accounted for 

the inferior sulfate resistance observed in the current study (Bakharev et al., 2003; Komljenović et 

al., 2013). Secondly, instead of using caustic alkali (sodium, potassium) hydroxides/silicates as 

the activator, hydrated lime was used in this study in the anticipation that many industrial 

byproducts (e.g., calcium carbide residue) were high in lime content and could be recycled in the 

AAS formulation (N. J. Jiang et al., 2018). The excessive hydrated lime could readily react with 

sulfate ions to generate expansive gypsum (Bakharev et al., 2002). Ettringite was another major 

expansive product due to sulfate attack, though it was not likely to prevail if aluminum was not 

readily available. The volume increase shown in Fig. 2-8(b) could partially demonstrate the 

detrimental effect of expansive gypsum (and ettringite if any) on the volume stability of AAS-

stabilized coral sand. Thirdly, the stabilized sand samples, compared with concrete or stabilized 

clay, had much higher porosity and thus permeability. Since impermeability was the major 

contributor to the durability of cementitious materials, the more porous stabilized coral sand 

exhibited poorer sulfate resistance.  
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Fig. 2-8 Strength reduction of stabilized coral sand under sulfate attack 

It was also found that the samples with low biochar content and soaked for a short period were 

more vulnerable to sulfate attack and thus displayed more deterioration in strength. This was likely 

because in biochar-containing samples cured for a short period, the alkali-activated reaction 

occurred slower and more unreacted hydrated lime was presented, which was available for being 

attacked by sulfate. The moisture content results analyzed before could partially support this 

explanation. Nevertheless, the addition of more biochar would mitigate its detrimental effect on 

strength development. This was mainly because biochar was negatively charged on the surface 

and therefore, it could repel sulfate ions in the surrounding area (Zhu et al., 2017). Besides, the 

porous structure of biochar could accommodate the formed expansive gypsum. Even so, when 

samples were exposed to a prolonged soaking period, almost complete loss of strength was 

observed regardless of whether biochar was added or not.  

In summary, the addition of biochar had only marginal effect on the strength development of 

AAS stabilized sand under sulfate attack, especially at high biochar dosages. While a low dosage 

of biochar was added to the AAS system, the samples showed better resistance to sulphate attack 

at short period soaking experiments. 
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2.3.3.2 Wet-dry cycles 

Wet-dry (W-D) cycle tests were performed on the biochar-amended AAS stabilized coral sand 

to determine its mass and strength change during repeated wetting and drying process. The 

changing of biochar content and cueing time have statistically significant influence on the UCS of 

samples during Wet-dry cycles, the p-values from Table 5 were both less than 0.001. Fig. 2-9 

shows the strength and mass change percentage with respect to biochar content. For all samples, 

with or without biochar, UCS values increased from < 0.5 MPa initially to ~1.7-2.0 MPa after 3 

W-D cycles. Similar results were previously reported in studies on W-D cycles of OPC stabilized 

fine-grained soils, in which slightly enhanced UCS was ascribed to extended curing during W-D 

cycles (Aldaood et al., 2014). After subjecting to more W-D cycles, strength reduction occurred 

and was finally reduced to below 1.3 MPa after 14 cycles. Moreover, adding biochar into the AAS 

stabilized sand was found to exacerbate strength reduction by 10%~35%. The more biochar added, 

the lower UCS value was observed during the Wet-dry cycles.  

The strength loss of soil stabilized by cementitious materials was traditionally attributed to both 

physical and chemical weathering processes (Kampala et al., 2014). Physical weathering was due 

to alternating thermal expansion and contraction that resulted in the formation of internal cracks. 

Chemical weathering was due to the dissolution and/or diffusion of hydration products that lead 

to the loss of strength. In the current study, the mass change for all samples was well below 1% 

even after 14 W-D cycles, indicating that chemical weathering was not likely to be significant. 

Therefore, the strength reduction from 3 W-D cycles onwards was mainly attributed to the 

formation of internal cracks from thermal expansion and contraction. If the samples contain 

biochar, its different thermal expansion coefficients compared with AAS hydration products could 

lead to differential volume changes under repetitive water gain and loss, which consequently 

resulted in the formation of internal cracks. With more biochar, the differential volume change 

tended to be more significant and thus more extensive internal cracks were generated, leading to 

lower strength. Thus, it is necessary to control the biochar content at a moderate dosage to maintain 

a higher strength in both 3 Wet-dry cycles and 14 Wet-dry cycles. 

 



51 

 

  
Fig. 2-9 Strength reduction of stabilized coral sand subjected to wet-dry cycles 

2.3.4 Microstructural Characteristics 

2.3.4.1 XRD 

The XRD results are shown in Fig. 2-10. The top two diffractograms of the samples under the 

normal curing condition were dominated by the peaks of calcite. This was obviously due to the 

nature of coral sand. In addition, a peak of hydrotalcite (Mg6Al2CO3(OH)16·4(H2O)) was also 

observed, which is a common hydration product in AAS (Yi et al., 2014). It should be noted that 

no peaks of C-S-H or C-A-H were identified which was attributed to the following two reasons. 

First, the sample collected for XRD tests had a low binder content (15%), while the rest of it was 

coral sand. The C-S-H or C-A-H peaks could be covered by other phases. Second, the amorphous 

nature of these hydration products makes them difficult to be identified by XRD.  
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Fig. 2-10 XRD spectra of AAS stabilized coral sand with and without biochar amendment 

under normal curing and sulfate attack conditions 

For the samples subjected to sulfate attack, several representative peaks of gypsum could be 

identified, for example, at 29.1° and 33.4°. This confirmed the formation of massive gypsum 

during sulfate attack, which significantly deteriorated the mechanical performance of stabilized 

coral sand. On the other hand, ettringite was not observed by XRD, which was likely due to its 

smaller amount compared with gypsum. 

 

2.3.4.2 SEM-EDS 

To further explore the underlying mechanisms for the effect of biochar on the AAS stabilized 

coral sand, SEM-EDS tests were conducted for microstructural and elemental analyses. The SEM 

images of AAS stabilized sand samples with various biochar contents (0%, 0.149% and 0.366%) 

subjected to 90d normal curing are shown in Fig.2-11. In the sample without biochar (Fig. 2-11 

(a)), numerous needle-like products could be observed. According to Yazici et al. (2008), these 

were likely to be C-S-H, which were common hydration products of AAS reactions. It can be also 
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seen that sand grains were glued by the hydration products, though the overall structure looked 

quite porous. In the sample with 0.149% biochar, a very dense structure could be observed as 

shown in Fig. 2-11 (b). The interface between biochar and sand grains contained densely formed 

hydration products. Moreover, the interior of biochar was also found to be partially filled with 

hydration products.   microstructures were reported by Mo et al. (2019) and Gupta et al. (2018). 

With a further increase in biochar content, more biochar was present in the pore space, as shown 

in Fig. 2-11 (c). It seemed that there were more weak bonding points between biochar and sand 

grains, making it less resistant to external load compared with that in Fig. 2-11 (b).  

To further investigate the product connecting biochar particles in Fig. 2-11 (c), EDS was 

conducted, and the result is shown in Fig. 2-11 (d). Though the magnification is low when the 

EDS is conducted, the element analysis clearly distinguished the hydration product from biochar. 

For the target points 1 and 2 in Fig. 2-11 (c), EDS results confirmed that the bonding was provided 

by the hydration products containing mainly calcium, aluminum, silicon, and magnesium (Point 

1), while Point 2 matched the composition of biochar, which primarily consisted of carbon.     

 
                                              (a)                                                                           (b)  
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                                              (c)                                                                           (d)  

Fig. 2-11 SEM images and EDS data of samples under the normal curing condition: (a) 0% 

biochar, 90d;  (b) 0.149% biochar, 90d; (c) 0.366 % biochar, 90d; (d) EDS results of points 1 and 

2 in (c) 

Fig. 2-12 shows the SEM images of samples subjected to sulfate attack. For both samples with 

and without biochar, the formation of gypsum could be identified. In addition, micro-cracks could 

be found along biochar-sand and biochar-biochar interfaces in both samples. Finally, the EDS test 

on two different erosion products (points 1 and 2 in Fig. 2-12 (c)) confirmed that they were gypsum 

mixed with C-S-H, as shown in Fig. 2-12 (d). 

 
                  (a)                       (b)  



55 

 

        
                                            (c)                                                                             (d)  

Fig. 2-12 SEM images and EDS data of stabilized sand subjected to sulfate attack: (a) 0% 

biochar, 7d soaking; (b) 0.366% biochar, 7d soaking; (c) 0.366% biochar, 3d soaking; (d) EDS 

results of points 1 and 2 in (c) 

Fig. 2-13 shows the SEM images of samples subjected to 14 wet-dry cycles. Micro-cracks could 

be observed in both samples with and without biochar. However, it seemed that more cracks 

existed in the biochar-amended sample especially along biochar-hydration products interfaces (Fig. 

2-13(b)). Correspondingly, cracks could also be spotted with naked eyes in the samples after 14 

W-D cycles. In addition, spalling of hydration products from sand grain surfaces were observed in 

both samples, which was attributed to the different thermal expansion coefficients between biochar 

and stabilized sand. Due to the high temperature pyrolysis process, biochar is less sensitive to 

temperature change during W-D cycles (Qing et al., 2018).  
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 (a)  (b)  

Fig. 2-13 SEM images of stabilized coral sand samples subjected to wet and dry cycles: (a) 

0% biochar, 14 W-D cycles; (b) 0.366% biochar, 14 W-D cycles 

2.4 Discussion 

The testing results reported in the current study demonstrated that the addition of a moderate 

amount of biochar in AAS could improve soil strength, stiffness, and water holding capacity in the 

long term. While adding an excessive amount of biochar was likely to be detrimental to strength 

and stiffness development, the ductility of the stabilized soil could be improved. Moreover, it was 

found that the addition of biochar in AAS in general had a marginal effect on soil resistance to 

sulfate attack, especially at high biochar contents. However, the resistance to wet-dry cycles was 

slightly deteriorated with the biochar amendment. 

The above-mentioned engineering and durability performance of biochar-amended AAS 

stabilized coral sand was associated with three-fold functions of biochar in the soil matrix, namely 

internal curing agent, micro-reinforcer, and mechanically weak point. The conceptual 

representation of these mechanisms is shown in Fig. 2-14. The details of the three functions are 

explained below: 
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Fig. 2-14 Conceptual representation of biochar-AAS-sand matrix and its microscopic 

characteristics 

2.4.1 Internal curing agent 

Biochar has a large internal pore volume and specific surface area. Thus, it has a superior water 

holding capacity (Mo et al., 2019).In the current study, the biochar was pre-saturated with water 

8.34 times of its weight. When the pre-saturated biochar is mixed with AAS, this part of water 

reserved in biochar is not immediately available for hydration reactions. Therefore, the hydration 

degree and consequently strength and stiffness of biochar-AAS stabilized sand are lower during 

short term curing (Fig. 2-2, 2-3 and 2-6). Nevertheless, as hydration continues, the water reserved 

in biochar is gradually released under the humidity gradient and contributes to the hydration 

products formation within the interior of biochar and densely packed around biochar-sand 

interfaces (Fig. 2-11 (b)). Moreover, the water reserved by biochar reduces the water evaporation 

especially in the long run (Fig. 2-6). Thus overall, there is more water available for AAS hydration 

reactions in biochar-amended samples than in those without biochar. This contributes to the higher 

strength and stiffness of AAS stabilized sand with moderate amounts of biochar in the long term 
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(Fig. 2-2 and 2-3). A similar concept of internal curing for biochar-concrete was reported by Gupta 

and Kua (2018) and Mo et al. (2019). 

2.4.2 Micro-reinforcer  

Biochar particles, especially the large ones, can span over the interfacial transition zone of AAS 

stabilized sand. As biochar particles are much more flexible when mixed with AAS, water, and 

sand, they can be twisted and fill small voids between the sand matrix. Biochar particles will gain 

strength and become stiffer, which can provide extra bonding points to strengthen the sample. 

From Fig. 2-15(a) in the supplemental material, the twisted biochar can be found embedded into 

the pores between sand particles and the biochar surface is covered with AAS. Besides, from the 

SEM image in Fig.2-15(b), the biochar was bonded to sand particles tightly and biochar can fill 

the voids between sand particles. They can contribute to the stress redistribution under external 

load and thus mitigate the brittle failure of the sample (Gupta et al., 2018). From the strain at failure 

results obtained in UCT, it is apparent that the addition of a substantial amount of biochar 

noticeably improved ductility (i.e., larger strain at failure) of AAS stabilized sand (Fig. 2-5).  

2.4.3 Mechanically weak point 

While biochar could benefit the AAS stabilized sand as an internal curing agent and micro-

reinforcer, its presence also introduces mechanically weak points into the soil matrix owning to its 

much lower strength compared with hydration products and sand grains. Under external loads, 

biochar particles will fracture and break much more easily while hydration products and sand 

grains remain intact, as shown in Fig. 2-16(a)-(b). The clear section of biochar particles indicates 

the failure points are around the biochar surface. It should be noted, however, that whether the 

“mechanically weak point” mechanism dominates depends on the biochar content in soil matrix. 

When biochar content is low, the chance of biochar being part of the strong force network, which 

transmits external loads, is also low. In that case, biochar fracturing and breakage will not 

significantly influence the initiation and development of soil failure and other mechanisms, namely 

internal curing agent and micro-reinforcer, are likely to dominate. This can explain why soil 

strength and stiffness could still be improved at moderate amounts of biochar (Fig. 2-2 and 2-3). 

On the other hand, if a substantial amount of biochar is added to the system, biochar particles are 

more likely to be part of the strong force network and transmit external loads. Therefore, their 
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fracturing and breakage will alter soil stress-strain behavior and reduce soil strength and stiffness 

(Fig. 2-2 and 2-3). 

In addition, the slightly deteriorated resistance to wet-dry cycles can also be explained by the 

“mechanically weak point” mechanism. Biochar and AAS hydration products have very different 

thermal expansion coefficients (Ma & Dehn, 2017). When subjected to wet-dry cycles, the volume 

changes of biochar and hydration products vary. The repeated differential expansion and shrinkage 

between biochar and hydration products will initiate micro-cracks along with their interfaces, 

which ultimately leads to the failure of soil samples. The more biochar presented in the soil matrix, 

the more micro-cracks are expected to be generated. Fig. 2-13(b) could partially support this 

hypothesis. Therefore, the amendment of biochar in AAS stabilized sand weakens its resistance to 

wet-dry cycles. 

2.4.3 Implications for practice 

As waste-based cementitious materials have been increasingly used as alternatives to OPC, they 

will also find their potential markets in the soil chemical stabilization applications. It is imperative 

to develop appropriate additives that can further improve their engineering performance and/or 

durability, making them more durable, resilient, and sustainable. Based on the results obtained in 

this study, biochar, a by-product of waste biomass pyrolysis, is a promising additive that can 

improve the strength, stiffness, ductility, and water holding capacity of AAS stabilized soil while 

not noticeably compromising its durability. However, to maximize the benefits of biochar, its 

content has to be carefully controlled and proper curing is recommended in practice. Biochar 

properties can vary depending on the feedstock and pyrolysis conditions; hence the suitability of 

locally available biochar should be tested to confirm its beneficial improvement of soil 

stabilization.  

2.5 Conclusions 

In this study, mechanical, physicochemical, durability, and microstructural characteristics of 

the biochar-amended AAS stabilized coral sand were investigated. The following conclusions can 

be drawn from this study: 

1. The addition of moderate amounts of biochar was beneficial for strength and stiffness 

development in the long term. On the other hand, a high biochar content reduced soil strength and 
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stiffness particularly for those cured for a short period. Moreover, adding biochar in AAS 

stabilized coral sand in general could improve its ductility, in the early age and/or with a high 

biochar dosage.  

2. Biochar amendment improved the water holding capacity of the stabilized sand. For 

samples cured for 3, 7 and 14 days, there was a slight increase (0.3% to 1.3%) in moisture content 

for samples with a high biochar dosage. For longer curing periods (28~90 days), the moisture 

content increased more notably with increasing biochar content. Samples with the highest biochar 

content (0.366%) exhibited 22-36% higher moisture content than those without biochar. 

3. The addition of biochar had only a marginal effect on the strength development of AAS 

stabilized sand under sulfate attack, especially at a high biochar content. However, the resistance 

to wet-dry cycles slightly deteriorated with the biochar amendment. 

4. The observed engineering and durability performance of biochar-amended AAS stabilized 

coral sand was associated with three-fold functions of biochar in the soil matrix, namely internal 

curing agent, micro-reinforcer, and mechanically weak point. 

2.6 Appendix 

  
 (a) (b)  

Fig. 2-15 Biochar serves as micro reinforcer: (a) under microscope;(b) under SEM. 
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 (a) (b)  

Fig. 2-16 Biochar serves as a mechanically weak point 
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CHAPTER 3 Deep Learning Based Approach for the Instance Segmentation 

of Clayey Soil Desiccation Cracks  

3.1 Introduction 

Water has been regarded as a crucial component of soil and it can be found in different forms 

(i.e., chemical, hygroscopic, membranous, and capillary water) within the soil structure (Gazis & 

Feng, 2004). Meanwhile, water has a direct impact on the engineering properties of soil (i.e., unit 

weight, effective stress, shear strength, bearing capacity, and permeability) (Mitchell & Soga, 

2005). The generation and propagation of the desiccation crack network within clayey soil is a 

complex phenomenon, which is controlled by the coupling of soil hydraulic and mechanical 

characteristics. Among these critical factors, water evaporation has been regarded as one of the 

most important factors. During the soil shrinkage process caused by water loss, tensile stress 

concentration could be observed in areas where the water evaporation rate is high ( Wang et al., 

2018). When the tensile stress is larger than the tensile strength of the soil, cracks start to expand 

from these areas (H. Da Li et al., 2019).  Once the primary crack is generated, the increase of 

surface area between soil and atmosphere boosts the crack progression and consequently the 

desiccation crack network starts to expand. 

The propagation of the desiccation crack network could deteriorate the engineering 

performance of clayey soil and change the hydraulic properties of soils. Therefore, it is crucial to 

characterize the patterns of desiccation cracks in the clayey soil as they have practical implications 

in geotechnical and geoenvironmental engineering ( Taboada et al., 2008; Lakshmikantha et al., 

2009).  For instance, the desiccation cracks developed on or within earth dams and embankments 

are likely to become preferential seepage paths, which could lead to hydraulic structure failure if 

not correctly handled (L. L. Wang et al., 2018). Desiccation cracks that appeared on the surface of 

the clayey slope could broaden the internal area of soil. Therefore, the internal weathering of soil 

could increase rainfall infiltration and lead to a reduction in slope stability (Jiang et al., 2019; Xu 

et al., 2021). Similarly, the development of desiccation cracks also significantly impacts the 

performance of environmental engineering infrastructures. For instance, clayey barrier materials 

with low permeability (e.g., bentonite) are commonly used to contain landfill wastes that possess 

a mixture of organic and inorganic hazardous constituents. However, when desiccation cracks 

appeared in the clayey barrier soil, the exposed internal surface could lead to more rainfall 
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infiltration into the deeper part of the barrier. Thus, the hazardous substances leaching from the 

landfill will increase dramatically, leading to imminent threats to the surrounding ecosystem 

(Miller et al., 1998; Li et al., 2019).  

Traditionally, the inspection and acquisition of soil desiccation crack patterns require in-situ 

manual measurements (Dasog & Shashidhara, 1993), which take many resources to complete and 

lack automation. Also, labor-dependent work relies on the judgment and experience of the 

inspector, which lacks objectivity. The task has been controversial since different criteria could be 

applied (Kalfarisi et al., 2020). Therefore, researchers have sought more intelligent and automated 

ways to characterize soil cracks. With the rapid developments in computer vision and image 

processing techniques, many image process techniques (IPTs) have been utilized for crack 

detection and segmentation in soil (Xu et al., 2021), concrete structures, steel structures, and 

asphalt surfaces (Spencer et al., 2019). In these scenarios, RGB (Red, Green, and Blue) images 

containing cracks go through denoising, grayscale, threshold manipulation and binarization to 

obtain the crack boundaries using a step-by-step strategy. The denoising process can decrease 

noise points from the raw image and make the raw image clear. The grayscale will transfer the 

three-channel (RGB) image into a single-channel image, where each pixel contains a grayscale 

color from 0 to 255. By selecting a proper threshold, all pixels with a greyscale larger than the 

threshold will be set as 1, while the rest of pixels with a greyscale smaller than the threshold will 

be set to 0. Thus, an image containing only black and white color was generated, and the whole 

process was named binarization. Then by analyzing the geometric characteristics between crack 

pixels (usually set 1) and non-crack pixels (usually set 0), the crack parameters such as average 

length, average width, and surface crack ratio could be obtained (Tang et al., 2011; Kumar et al., 

2015; An et al., 2020). To improve the crack segmentation accuracy, Otsu’s method has been 

applied in threshold selection to transfer the RGB (Red Green Blue) image into a binary image 

(Otsu, 1979; Lu et al., 2016). Yamaguchi and Hashimoto (2010) proposed a percolation-based 

image processing technique to accelerate crack detection in large-resolution images. Oliveira and 

Correia (2014) developed a toolkit using a fixed or fuzzy entropy thresholding method to detect 

and segment crack larger than 2 mm. However, the accuracy of these widely used IPTs heavily 

relies on image quality. Blurred images, not focused images, images captured with poor lighting 

conditions, and images with shadows could reduce the segmentation performance. Apart from that, 

these IPTs were only applicable for specific engineering problems. Many parameters must be 
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adjusted manually before these IPTs can work for a different scenario (O’Mahony et al., 2020). In 

other words, these methods are not smart enough to adapt to different scenarios. Therefore, 

developing an innovative method that embraces both generalization ability and high accuracy is 

necessary.  

In the 1950s, the concept of artificial intelligence (AI) was firstly proposed, which expressed 

the expectation for man-made machines to have the intelligence and learning ability like human 

beings (McCarthy et al., 2006). As one of the methods to achieve AI, machine learning (ML) was 

designed based on data analysis through a prepared database (Jordan & Mitchell, 2015). ML 

algorithms such as linear regression, support vector machine (SVM), K-nearest neighbors (KNN), 

and Naive Bayes, have been utilized for decision-making and prediction tasks based on a given 

dataset (Géron, 2019). With the development of computer science and information technology, an 

innovative network was developed by imitating human neuron function, which was named as 

artificial neural network (ANN). ANN could be trained to establish a point-to-point connection 

function between given inputs and outputs (Dreiseitl & Ohno-Machado, 2002). In addition, once 

the function was trained, the function could make decisions by itself. Inspired by the human visual 

cortex, a convolutional neural network (CNN) was designed for feature extraction based on ANN 

(Fukushima & Miyake, 1982; LeCun et al., 1989). When a series of images with certain patterns 

were fed into CNN, millions of parameters will be trained and adjusted to recognize these patterns. 

Therefore, once the pre-trained CNN was deployed, it would operate itself to recognize the same 

patterns. For example, once the algorithm learned the feature of numbers from 0 to 9, the algorithm 

could recognize numbers in all circumstances like zip code and hand-written numbers. CNN is a 

network with sufficient flexibility, which indicates that more layers could be added when 

encountering complicated tasks. With the help of databases like COCO and Imagenet containing 

more than 300 thousand images, new CNN algorithms utilizing more complex model structures, 

more function layers, and more training accuracy could be achieved. These CNN algorithms were 

nominated as deep CNN. With exponential development in the past decade, CNNs consisting of 

more than 100 layers have led to breakthroughs in the processing of images and videos by 

improving the accuracy and efficiency to an unprecedented level. Particularly in the image 

processing field, deep CNNs have been utilized for object detection, image segmentation, image 

classification, and image denoising (Lecun et al., 2015). With the highly automated algorithm, 

deep CNNs have been widely applied in structure health monitoring to inspect spalling, erosion 
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and crack in concrete structures, which could save time and labor to finish manually (Wengang 

Zhang et al., 2021). Besides, deep CNNs have been applied in underground geotechnical 

engineering to identify underground rock types and working conditions (Wengang Zhang & Phoon, 

2022). Furthermore, deep CNNs have been adopted in medical radiology image diagnosis by 

comparing the X-Ray images between a healthy person and a patient. The application proved 

especially useful during the COVID-19 pandemic period for quick diagnosis of the diseases (Wang 

et al., 2020). Due to the high compatibility of the CNNs, more functions have been added to 

achieve multiple functions simultaneously.  

He et al. (2017) proposed the mask region conventional neural network (Mask R-CNN) based 

on Faster R-CNN (Ren et al., 2017) by attaching a binary mask to the detected object, which could 

help highlight each target from the background with masks in varying colors. The binary mask 

generation process can be illustrated in Fig. 3-1 (a)-(d) with a simple example, where an algorithm 

was trained to find the cross shape in an image. When Fig. 3-1(a) was fed into the algorithm. The 

figure will be digitized into a matrix and the numbers represent different colors of the different 

shapes. In Fig. 3-1(c), a matrix including only 0 and 1 was generated from the algorithm and the 

matrix was named as binary mask matrix. Since the binary mask has been trained to recognize the 

cross shape from all different shapes. When the digitized image matrix multiplied with the binary 

mask matrix, only the cross shape was kept and highlighted with red color. The rest of the shapes 

have been wiped out with all zeros. Thus the purple cross in Fig. 3-1(a) has been successfully 

segmented and highlighted with a red mask shown in Fig. 3-1(d).  

 
Fig. 3-1 Binary mask generation flow chart of the Mask R-CNN 

Due to its outstanding performance in object classification, object locating, and instance 

segmentation, the three-fold function Mask R-CNN soon got attention from the civil engineering 

community. So far, Mask R-CNN has been applied for automated crack characterization in various 
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scenarios, such as concrete crack detection, road crack characterization (Singh & Shekhar, 2018), 

tunneling crack and water leakage detection (Zhao et al., 2020), defects detection (concrete crack 

and spalling) in structure health monitoring (Kim & Cho, 2019), and cable-stayed bridge 

inspection (Hou et al., 2020). Compared with cracks encountered in structural engineering, soil 

cracks often have more complicated patterns, which require more data to train the deep learning 

algorithm network. There are a few attempts of using the CNN algorithm for soil crack detection 

and segmentation. For instance,  Xu et al. (2020) used the U-Net CNN algorithm to implement 

semantic segmentation of crack networks in clay soil. The U-Net algorithm has a symmetrical 

structure including a contracting path and an expansive path, which combines the low-resolution 

features for classification and the high resolution features for segmentation (Ronneberger et al., 

2015). Both paths follow the typical convolutional network structure. However, individual cracks 

can’t be separated from the whole crack network in the semantic segmentation approach. Instead, 

the Mask R-CNN approach can detect, locate, and segment individual soil cracks. To the 

knowledge of the authors, there have not yet been any reported studies that use Mask R-CNN for 

the detection and instance segmentation of clayey soil desiccation cracks.  

In this study, a deep learning approach based on the state-of-the-art Mask R-CNN algorithm 

was adopted for clayey soil desiccation crack characterization. The end-to-end algorithm has 

integrated detection, locating, and instance segmentation function together, which could give the 

abovementioned three results at the same time. A soil crack dataset consisting of multi-source 

crack images was prepared and annotated for the Mask R-CNN training, validation, and testing, 

therefore, the algorithm was able to recognize both minor and major cracks. Then the performance 

of the trained Mask R-CNN model was evaluated by a series of metrics including precision, recall, 

F1 score, APbb, AP bb 
50 , AP bb 

75 , APm, AP m 
50 , and AP m 

75 . Finally, the algorithm was tested for the 

detection, locating, and segmentation of clayey soil desiccation cracks in situations with varying 

degrees of complexity. The performance of the Mask R-CNN was also compared with that of the 

U-Net CNN approach. 

3.2 Methodologies 

3.2.1 Mask R-CNN Architecture 

To accomplish the detection, locating and segmentation with sufficient accuracy, Mask R-CNN 

adopts a two-stage framework. The first stage generates enough region proposals that may contain 
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target objects, while the second stage performs a precise detection, locating, and segmentation. 

The architecture of the Mask R-CNN model is shown in Fig. 3-2. At the first stage, crack images 

are fed into the backbone network (Resnet-50) and unique feature maps containing RGB (red, 

green and blue channel of the image) information are produced. Based on a feature map, a region 

proposal network (RPN) could generate a series of pre-designed bounding boxes that possibly 

contain targets (i.e., cracks in this study). These bounding boxes are also known as regions of 

interest (RoI). Taking Fig. 3-2 as an example, it could be found that more proposed bounding 

boxes are shown on the right side since the crack appears on the right side of the image. Then, the 

RoIAlign properly aligns proposed bounding boxes on the feature map with a more accurate 

location, which results in a higher detection precision (K. He et al., 2017). At the second stage, the 

fully connected (FC) layers passed the fixed feature map to a normalized exponential function 

(SoftMax) and a bounding box regression layer parallelly, giving the classification and object 

detection results, respectively. Parallelly, a full convolution network (FCN) is utilized to generate 

a binary mask, which could segment the detected objects from the background.  

 

Fig. 3-2 Flowchart of the Mask R-CNN algorithm in crack characterization 
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3.2.2 Dataset preparation and preprocessing 

The clayey soil crack images were obtained from Google Images, Instagram, and laboratory 

captured images to prepare the whole dataset. Therefore, a diversity of the dataset could be assured 

and a high generalization ability of the proposed algorithm could be achieved. The generalization 

ability refers to the capability of an algorithm to give appropriate answers in the face of unlearned 

scenarios. To prepare the soil cracks in the laboratory, clayey soil with varying initial water 

contents was prepared to acquire different crack patterns. Later, the raw crack images were 

captured by a Sony α7 Mark II digital camera with a resolution of 3008×1688. After all raw images 

were downloaded or captured, these images were cut into a series of small patches with a uniform 

resolution of 256×256 pixels through a Python program. In this way, a balance between keeping 

image details and lowering computational demands can be sustained. All small patches were 

selected manually to discard those without cracks. The whole procedure can be found in Fig. 3-3.  

 

Fig. 3-3 The division of raw images into 256×256 pixels patches. 

In total, 1200 crack images were selected and shuffled randomly to eliminate the bias from the 

same image. Within these selected crack images, images originated from Google Images, 

Instagram and laboratory accounted for 60%, 20%, and 20%, respectively. To teach the algorithm 

what is a single crack, the annotation process is indispensable. In the current study, the images 

were annotated using the VGG Image Annotator (Dutta & Zisserman, 2019). All cracks that 
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appeared in the images were carefully annotated along their boundaries using the polygon region 

shapes. All annotation information including file name, category name, coordinates of the polygon, 

etc., were saved into a json file and ready for the training process. Furthermore, according to 

Shahin et al. (2004) and Zhao et al. (2020), 90% of the images in the dataset were reserved for 

algorithm calibration and 10% for testing. The calibration data were further spilled into the training 

and validation sets at a ratio of 8:2. The details of each subset are displayed in Table 3-1.  

Table 3-1 Image details in the soil crack dataset 

Dataset name Amount Resolution 

Calibration set (90%) Training set (80%) 864 256×256 
Validation set (20%) 216 256×256 

Test set (10%) 120 256×256 
Total 1200 256×256 

 

Since a sufficiently large dataset is essential for deep learning algorithms with millions of 

parameters, data augmentation is commonly adopted to enlarge the dataset size and avoid 

overfitting during the training process (Hou et al., 2020). Random image cropping, flipping, 

rotation, scaling, blurring, Gaussian noise, etc., have been widely adopted for image augmentation. 

In this study, with the assistance of the Imgaug library (Jung et al., 2020), each image was 

duplicated through one of the following four augmentation methods (i.e., left-right flipping, up-

down flipping, rotation 90°, and scaling), as shown in Fig. 3-4. After the image augmentation, the 

entire dataset contained 2400 images. Since the selected four augmentation methods could change 

the bounding box accordingly, the performance of the RPN and the box-regression layer could be 

further enhanced. Thus, the proposed algorithm could be more robust when facing complicated 

tasks (Kim and Cho, 2020). 
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Fig. 3-4 Examples of image augmentation process: (a) original soil crack image; (b) left-right 

flipping; (c) up-down flipping;(d) rotation 90°;(e) scaling. 

3.2.3 Mask R-CNN model training and validation 

The online platform Google Colaboratory (Colab) was used for the Mask R-CNN model 

training and fine-tuning. The platform offers a Tesla P100 GPU (16 GB graphic memory) for 

online model training. Instead of training from scratch, the transfer learning strategy was adopted 

to save training time and improve model performance. It has been widely recognized that transfer 

learning is particularly efficient when dataset size is limited (Pan & Yang, 2010). In the current 

study, a pre-trained model weight from COCO dataset (0.3 million images from 91 categories) 

was used to initiate the training.  

As for the selection of the CNN backbone, Resnet-50 and Resnet-101 are most popular in 

computer vision tasks (Johnson, 2018) and thus chosen as candidates in the current study. During 

the training and validation process, though Resnet-101 (101 convolution layers) had a deeper 

network than Resnet-50 (50 convolution layers), both backbones reached similar performances in 

terms of accuracy and loss. On the other hand, Resnet-101 required more training time to achieve 

a similar performance. Therefore, Resnet-50 was selected as the CNN backbone of the algorithm. 
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To balance the calculation efficiency and hardware capacity, the batch size of the training 

dataset was set as 8 and the synchronous stochastic gradient descent (SGD) was used to train the 

model with the weight decay and momentum set as 0.0001 and 0.9, respectively. A stage-wise 

training strategy was adopted here to help the model converge earlier and avoid gradient explosion 

in the early training phase.  To begin with, the head part of the whole network composed of the 

bounding box generator and mask generator was trained for 10 epochs at an initial learning rate of 

0.001. Then, for the next 40 epochs, the learning rate was reduced by 10 times and the first three 

stages of the Resnet-50 were activated to continue the training process. After that, the learning rate 

was decreased by 10 times again and all five stages of the Resnet-50 were activated to train another 

100 epochs. Finally, the learning rate was decreased by another 10 times until the last 50 epochs 

were finished. The total training process took less than 6 hours to complete.  

3.3 Model Evaluation 

3.3.1 Mask R-CNN model loss function 

Since the Mask R-CNN algorithm comprises two stages of processing, the loss function should 

consist of the first stage loss from RPN (LRPN) and the second stage loss from the three parallel 

functions. The second stage loss includes the classification loss (Lcls), the position regression loss 

of the bounding box (Lbox), and the segmentation loss of mask (Lmask) (K. He et al., 2017). The loss 

function can be calculated based on Eq. (1).  

 RPN cls box maskL L L L L= + + +   (1) 

where LRPN can be obtained by adding the anchor classification loss (Lcls1) and the bounding 

box regression loss (Lbox1) from the RPN, which is manifested in Eq.(2).  

 ( ) ( )1 1
1 1

1 1, ,RPN cls i i i box i i
i icls box

L L p p p L t t
N N

λ∗ ∗= +∑ ∑  (2) 

Here, i is the index of anchors generated in the RPN. pi is the predicted probability of anchor i 

being classified as an object. While  pi
* represents whether the anchor is positive (pi

*=1) or negative 

(pi
*=0). Ncls1 and Nbox1 are the number of anchor numbers and bounding box numbers in the RPN. 

λ is a hyperparameter applied to balance these two losses.   

The calculations of Lbox, Lcls, and Lmask are listed in Eqs. (3)~(6):  

 ( ) 1, ( )box i i i iL t t L smooth t t∗ ∗= −  (3) 
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where ti is a vector containing the bounding box location and size (x coordinate, y coordinate, 

width and height) and ti
* is the vector for ground truth bounding box. m2 is the mask resolution 

used in the algorithm (28 x 28 pixels in this study). k represents the kth class object in the dataset 

(k=1 in this study due to that only the crack was classified against the background). sij and sij
* are 

the binary value (0 or 1) in the predicted mask and ground truth mask respectively (Yu et al., 2019; 

Xu et al., 2021). 

The loss curves during the training and validation process in the current study are shown in Fig. 

3-5. Both the training loss and the validation loss were the overall loss calculated through Equation 

(1). At the end of each training epoch, the algorithm was validated on the validation dataset and 

the validation loss was recorded. The training loss showed a quick declining trend during the first 

10 epochs, which was attributed to the high learning rate. As more layers of the backbone were 

activated and the learning rate decreased, the reduction in training loss slowed down. When the 

training epoch was larger than 100, the training loss was stable at around 0.07. In the meantime, 

the validation loss decreased from 0.48 to 0.20. The validation loss at the end of the training 

process was slightly higher than 0.12 reported by (Yu et al., 2019) in a similar experiment scenario.  

 
Fig. 3-5 Curves of the loss function during model training and validation process 
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3.3.2 Detection performance 

The model's performance was evaluated using a series of metrics related to detection, object 

location, and segmentation. Firstly, the criteria to define a correct detection are explained briefly. 

In the field of deep learning, the intersection over union (IoU), a metric based on the Jaccard Index, 

is usually adopted as the criterion for determining whether the detection is correct (Padilla et al., 

2020). The definition of the IoU is illustrated in Fig. 3-6. The area of overlap is the intersection of 

the ground truth bounding box (or mask) and the predicted bounding box (or mask). The area of 

union is the total area covered by both bounding boxes. Therefore, the IoU will fall into the range 

between 0 and 1. When the threshold of IoU equals 50%, the detection is defined as correct, with 

overlap area accounting for 50% of the union area. When IoU=50% is adopted, it only represents 

a less strict criterion. Once it is in a critical scenario, more strict criteria such as IoU=75% or even 

IoU=90% could be applied.  

 

 

Fig. 3-6 Diagram of intersection over union (IoU) 

Under a given IoU criterion, the algorithm detection results could be categorized as: (1) correct 

detections of ground truth bounding boxes (True positive: TP), (2) incorrect detections of 

nonexistent objects or misplaced detections of existing objects (False positive: FP), and (3) 

undetected ground-truth bounding boxes (FN). Based on the detection results, the following 

metrics have been selected to evaluate the detection performance: precision (P), recall (R) and F1 

score. Their definitions are shown in Eqs. (7)~(9):  
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 TP TPP
TP FP all detections

= =
+

  (7) 

 TP TPR
TP FN all ground truths

= =
+  

 (8) 

 2 precision recallF1 score
precision recall
× ×

=
+

 (9) 

Precision is the percentage of correct detection (TP) in all detection results, while recall 

represents the fraction of correct detection (TP) found within all ground truths. The F1 score is the 

harmonic score of precision and recall, which is adopted as a single metric to evaluate the 

algorithm's performance (Padilla et al., 2020).  

In the current study, the precision, recall and F1 score were used to evaluate the general 

performance of the algorithm. To compare the performance of the Mask R-CNN algorithm, the 

results have been compared with the other classical segmentation algorithm --- U-Net, as shown 

in Table 3-2 (Ronneberger et al., 2015). The U-Net was trained on the same dataset prepared in 

this study.  

Table 3-2. Performance comparison between Mask R-CNN and U-Net  

 Precision (%) Recall (%) F1 score (%) 
Mask R-CNN 73.29% 82.76% 77.74% 

U-Net 70.89% 81.82% 75.96% 
 

From Table 3-2, it can be seen that the precision, recall and F1 score in Mask R-CNN were 

73.29%, 82.76% and 77.74%, respectively, while those in U-Net were only 70.89%, 81.82% and 

75.96%. The Mask R-CNN had better performance over the U-Net using the same dataset prepared 

in this study. All results obtained in this study were similar to the metrics reported by Xu et al 

(2021) using U-Net for soil segmentation. Furthermore, to find the performance of both algorithm 

in real-world testing scenarios, the test results will be discussed in the latter part. 

3.3.3 Locating and Segmentation performance 

To assess the locating and segmentation performance of the algorithm, three parameters, 

namely APbb, APbb 
50  and APbb 

75 , are selected to evaluate the locating performance (bb stands for 

bounding box), while APm, APm 
50, and APm 

75 are selected as metrics to appraise the segmentation 
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performance (m stands for mask). Here, APbb 
50  and APbb 

75  indicate the typical average precision value 

of the bounding box at IoU=50% and IoU=75%, respectively. APbb is the average precision at IoU 

increasing from 50% to 95%, which can be calculated from Eq.(10). The evaluation results are 

listed in Table 3-3. 

 

 50 55 60 90 95( ) /10AP AP AP AP AP AP= + + + + +   (10) 

Table 3-3 Locating and segmentation performance of the proposed algorithm  

APbb 

(%) 
APbb 

50  
(%) 

APbb 
75  

(%) 
APm 

(%) 
APm 

50 
(%) 

APm 
75 

(%) 
64.14% 83.68% 72.62% 47.59% 69.35% 32.62% 

 

From Table 3, a slight decrease in locating results could be seen when the criterion was 

improved from IoU=50% to 75%, manifested by the reduction of APbb from 83.68% to 72.62%. 

However, the segmentation performance witnessed a sharp decrease from 69.35% to 32.62% when 

changing the criterion from IoU=50% to 75%. It should be noted that the dropping of average 

precision of both locating and segmentation performances were also reported in Nie et al  (2020) 

and Tian et al (2020).  

3.3.4 Computational performance 

To check the computational performance of the trained Mask R-CNN model, the test dataset 

including 120 images was fed into the network. With the acceleration of the Tesla P100 GPU, the 

algorithm completed the crack characterization in 53.97s, with a speed of 2.2 frames per second 

(FPS). Besides, when testing images with larger resolutions, the algorithm took 106.33s to process 

132 images with a resolution of 1024×768. It meant that the speed decreased to 1.3 FPS. In 

comparison, Singh & Shekhar (2018) reported an inference speed of 3.5 FPS on a series of 

512×512. Compared to the increase in pixels and multi objects situation within this study, the 

algorithm is still deemed to achieve a satisfying computational efficiency. 
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3.4 Detection Results 

In order to verify the performance of the proposed Mask R-CNN algorithm for detecting, 

locating and segmenting soil cracks, three cases were carefully assessed in this study. All images 

appeared in these three cases were prepared separately to ensure that none of them has been utilized 

in previous training, validation and test processes. Among these cases, Case 1 focused on the 

situations where only a few cracks appeared in a low-resolution image. The images’ background 

was close to a solid color and the crack edge was clear. Case 2 was about images with a moderate 

number of cracks in low-resolution images. Several disturbances like scratches appeared in the 

background and the crack edge was not very sharp. In Case 3, high-resolution images containing 

more than 10 cracks were processed by the proposed algorithm. These cracks intersected with each 

other and constituted complex crack networks. To assess how the Mask R-CNN algorithm 

performed, the precision, recall and F1 score were obtained and compared with those by using the 

U-Net. In addition, the locating and segmentation results of the Mask R-CNN were evaluated using 

APbb, APbb 
50 , APbb 

75 , APm, APm 
50, and APm 

75. 

3.4.1 Case 1 

In Case 1, the typical results of three similar images are displayed in Fig. 3-7(a)-(c), in which 

soil crack detection accuracy including precision, recall and F1 score were compared between 

Mask R-CNN and U-Net. The locating and segmentation performances of the Mask R-CNN 

algorithm in Case 1 were listed in Table 3-4. In general, both deep learning algorithms could detect, 

locate and segment soil cracks effortlessly when soil cracks were found on the soil surface with a 

solid color. 

In Fig. 3-7(a), all five cracks were successfully detected, located and segmented with different 

colors by the Mask R-CNN algorithm. The U-Net could detect all cracks and segment them from 

the background by high contrast colors (black and white), though individual cracks were not 

distinguished. From the accuracy metrics, the Mask R-CNN achieved a precision of 95.14%, 

meaning that in all detected crack pixels, 95.14% of them were the same as the ground truth ones. 

With a recall of 85.64%, the algorithm could detect 85.64% of all ground truth crack pixels. The 

F1 score was 90.72%, which served as a harmonic result of precision and recall. When it came to 

U-Net, the algorithm reached a precision of 81.57%, a recall of 98.43% and an F1 score of 89.21%. 

Though the recall from U-Net was higher than that of Mask R-CNN, the higher F1 score obtained 
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from Mask R-CNN proved a better performance. To study the performance of Mask R-CNN on 

locating and segmentation in Fig. 3-7(a), more related metrics are provided in Table 3-4. When a 

loose detection criterion (IoU=50%) was adopted, Mask R-CNN gained a locating accuracy (AP
bb 
50 ) of 98.36% and a segmentation accuracy (APm 

50) of 96.31%. When the detection criterion was 

lifted to strict (IoU=75%), the locating accuracy (APbb 
75 ) decreased to 76.94% and the segmentation 

accuracy (APm 
75) dropped to 78.07%. Since more correct pixels were needed to be classified as true 

to achieve a 75% IoU, the algorithm had to ignore those detections with IoU between 50% and 

75%. Therefore, the number of true detections dropped obviously, which could lower the locating 

and segmentation accuracy correspondingly. Moreover, the mean APbb and APm were 64.42% and 

69.52%, respectively. Similar accuracy dropping in locating and segmentation was also reported 

by Tian et al (2020) and Nie et al (2020). Since there were no reported studies regarding the use 

of the Mask R-CNN for soil crack detection, the APbb and APm result in this study were compared 

with those from the Mask R-CNN applications in other fields. Tian et al (2020) obtained the APm 

= 52.2% from apple flower segmentation using the Mask R-CNN, while Nie et al (2020) reported 

APbb =70.6% and APm =62.0% in a study of utilizing Mask R-CNN for ship detection. Considering 

the complexity variance between crack and aforementioned objects, the performance of the 

proposed Mask R-CNN algorithm is satisfactory when dealing with the task of detecting, locating 

and segmenting soil desiccation cracks.  

In Fig. 3-7(b), Mask R-CNN could recognize five cracks whereas the U-Net missed part of the 

cracks. The precision, recall and F1 score acquired from Mask R-CNN were 90.43%, 87.64% and 

89.01%, respectively. The minor part missing at two ends shown in the red mask could account 

for the relatively lower recall value. The U-Net got a precision of 88.85%, a recall of 85.68% and 

an F1 score of 87.24%, which were also satisfying. Due to the missing part of a small crack, the 

recall of U-Net was smaller than Mask R-CNN. But in general, the performance of both algorithms 

on this image was quite similar. The locating and segmentation results of Mask R-CNN are shown 

in Table 4. Under the loose detection criterion (IoU=50%), the locating accuracy APbb 
50  was 94.67% 

and the segmentation accuracy APm 
50  was 84.52%, indicating that the final predicted bounding 

boxes and segmentation mask was close to the ground truth ones. Nevertheless, when 

implementing a stricter detection criterion (IoU=75%), the locating (APbb 
75 ) and segmentation 

accuracy (AP m 
75 ) decreased to 85.71% and 71.43%, respectively. Therefore, the performance 

seemed not to compromise too much under a strict criterion. Finally, Mask R-CNN gained a mean 
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accuracy of locating (APbb) of 68.79% and a mean segmentation accuracy (APm) of 42.35%. The 

huge difference between APbb and APm suggested that, though the model could locate crack 

location decently, the detailed outline of cracks was hard to segment ideally based on current image 

resolution.  

 
Fig. 3-7 Soil desiccation crack detection results in Case 1 

Table 3-4 The locating and segmentation performance of the Mask R-CNN in Case 1 

Image No. Resolution APbb 

(%) 
APbb 

50  
(%) 

APbb 
75  

(%) 
APm 

(%) 
APm 

50 
(%) 

APm 
75 

(%) 
Fig. 7(a) 256×256 64.42 98.36 76.94 69.52 96.31 78.07 
Fig. 7(b) 256×256 68.79 94.67 85.71 42.35 84.52 71.43 
Fig. 7(c) 256×256 75.12 96.39 80.85 65.57 97.48 69.44 
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In Fig. 3-7(c), there were seven cracks in the image. Both Mask R-CNN and U-Net could detect 

and segment them from the background. The Mask R-CNN has better detection performance over 

the U-Net, since U-Net only detected half of the crack on the right corner. The missed crack 

detection from U-Net led to a lower precision (81.12%) than that from the Mask R-CNN (93.71%). 

However, the U-Net had a higher recall rate (97.88%) than Mask R-CNN’s (88.13%). Due to some 

ends of cracks not being segmented perfectly, the Mask R-CNN gained a smaller recall value. 

Then in terms of the general performance, the F1 score of Mask R-CNN (90.83%) was slightly 

higher than that of U-Net (88.71%). Moreover, the APbb 
50 and APbb 

75  of Mask-RCNN were 96.39% 

and 80.85%, respectively, which demonstrated that the algorithm was able to locate cracks 

accurately even under a strict criterion (IoU=75%). Furthermore, the APm 
50  and APm 

75 of Mask R-

CNN were 97.48% and 69.44%, respectively. The reduction of segmentation accuracy when 

changing the detection criterion to IoU=75% indicated that the model could not maintain that high 

segmentation performance when processing low-resolution images.  

3.4.2 Case 2 

In Case 2, soil crack images were classified as moderately difficult since more small scratches 

and uneven soil surfaces appeared in the background. These images were fed into the Mask R-

CNN and U-Net to test their detection, locating and segmentation performances. Typical examples 

were shown in Fig. 3-8(a)-(c) along with detection metrics (precision, recall and F1 score). Besides, 

the locating and segmentation accuracies were summarized in Table 3-5. As the disturbances such 

as scratches appeared in the image, the algorithm has to determine if those scratches belonged to 

cracks. Thus, the general performance of U-Net during image detection, locating and segmentation 

was impaired while the Mask R-CNN persisted a high performance similar to that in Case 1.  
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Fig. 3-8 Soil desiccation crack detection results in Case 2 

Table 3-5 The locating and segmentation performance of the Mask R-CNN in Case 2 

Image No. Resolution APbb 

(%) 
APbb 

50  
(%) 

APbb 
75  

(%) 
APm 

(%) 
APm 

50 
(%) 

APm 
75 

(%) 
Fig. 8(a) 256×256 36.68 55.39 47.66 5.00 46.77 18.52 
Fig. 8(b) 256×256 67.92 87.34 74.17 45.92 87.51 38.75 
Fig. 8(c) 256×256 45.82 73.09 49.22 17.73 61.07 27.49 

 

More specifically, cracks in Fig. 3-8(a) had relatively blurry boundaries than those in Case 1. 

Even though the Mask R-CNN algorithm could still achieve a precision of 94.65%, a recall of 

90.24% and an F1 score of 92.39%, the precision, recall and F1 score in the U-Net were 91.97%, 

44.84% and 60.29%, respectively. The apparent reduction in recall rate was attributed to the 
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discontinued detection and segmentation results of cracks using U-net. Therefore, the recall rate 

(the number of detected crack pixels divided by all ground truth crack pixels) was low. When it 

comes to the locating part, all trunk portions of the cracks were located successfully by the Mask 

R-CNN. However, the tiny end of the cracks in the bottom left and top right corner was missing, 

which resulted in a lower precision (APbb 
50 ) of 55.30% even under a loose detection criterion 

(IoU=50%). When the criterion was tightened to IoU=75%, the APbb 
75  was further lowered to 

47.60%. Overall, the mean APbb was merely 36.66% in Fig. 3-8(a). As for the segmentation 

accuracy of Mask R-CNN, even though the APm 
50  was 46.70%, which was already a low score 

under loose detection criterion (IoU=50%), it continued dropping to APm 
75 =18.50% when the 

detection criterion was set to IoU=75%. The huge decline implied the Mask R-CNN model had 

difficulty extracting crack features such as crack boundaries, which could also explain why the 

mean APm was only 5%. The extremely low mean segmentation accuracy (APm) demonstrated that 

the instance segmentation algorithm Mask R-CNN might not be suitable for cracks segmentation 

with blurry boundary under low image resolution (256×256). However, the algorithm was still 

precise in terms of detection and locating accuracy.  

From Fig. 3-8(b), it could be observed that many tiny scrapes were spread around the main 

crack network. Moreover, the uneven soil surface could be observed in the upper part of the image. 

If the image was tested with traditional IPTs, which focused more on edge detection, the 

misdetection rate could be very high. However, when applying deep learning algorithms, Mask R-

CNN and U-Net could complete the detection task decently. The precision and recall obtained 

from Mask R-CNN were 83.33% and 92.81%, respectively, leading to an F1 score of 87.81%. This 

indicated that major cracks were all detected accurately. Although U-Net acquired 74.97% for 

precision, 96.45% for recall and 84.37% for F1 score, the precision of U-Net was lower than that 

of Mask R-CNN because several small scratches were falsely recognized as cracks. Furthermore, 

for the Mask R-CNN algorithm, when a loose detection criterion (IoU=50%) was applied, the 

locating (APbb 
50 ) and segmentation (APm 

50 ) accuracies were 87.34% and 87.51%, respectively. 

Compared with the metrics (APbb 
50 =55.39% and APm 

50=46.77%) in Fig. 3-8(a), the Mask R-CNN 

algorithm showed its ability to avoid distractions from uneven soil surface and small traces as long 

as the crack edges were clear. By raising the detection criterion to IoU=75%, the locating accuracy 

APbb 
75  declined to 74.17% and the segmentation accuracy APm 

75  dropped to 38.75%. The large 

reduction in segmentation accuracy indicated that, under a strict detection criterion, cracks could 
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still be located precisely. However, the algorithm cannot generate a more accurate mask for the 

segmentation, which could also explain why the mean locating accuracy (APbb) was higher than 

the mean segmentation accuracy (APm). 

Fig. 3-8(c) shows detection, locating and segmentation of soil cracks that appeared on the 

surface of heterogeneous soil which had many small scrapes on it. It is noticeable that these cracks 

joined each other and formed a crack network. In general, both Mask R-CNN and U-Net could 

identify most cracks in the image but Mask R-CNN obtained more cracks than the U-Net, which 

was manifested by the detection metrics. More specifically, the Mask R-CNN gained a precision 

of 81.72%, a recall of 87.50% and an F1-score of 84.51%, while the precision, recall and F1 score 

were 78.57%, 71.39% and 74.81% for U-Net, respectively. Though the metrics were slightly lower 

compared with those obtained in Fig. 3-8(a) and (b), they were still fairly satisfied because more 

cracks in Fig. 3-8(c) appeared along the edges of the image. When the crack image was captured 

or cropped, those cracks along the image edge tended to have a straight portion. However, these 

straight portions were hard to be observed in natural cracks, which posed new challenges to the 

algorithm. When it comes to the locating accuracy of the Mask R-CNN, the APbb 
50  was 73.09%, the 

APbb 
75  was 49.22% and the mean APbb was 45.82%. The reduced locating accuracy showed that the 

algorithm needed more training under strict detection criteria, which required more high-resolution 

images to provide more details. Compared with the detection performance, the segmentation 

performance was slightly unsatisfactory. Since the cracks joined to each other, the intersections 

between many cracks severely complicated the segmentation task for the Mask R-CNN. Therefore, 

the segmentation accuracy under loose (IoU=50%) and strict (IoU=75%) detection criterion was 

61.07% and 27.49%, respectively. Besides, the mean APm was merely 17.33%. The reason for 

poor segmentation performance under strict detection criteria was related to the blurred boundary 

of the mask, which was similar to that encountered in Fig. 3-8(b).  

In summary, the detection and locating performances of the Mask R-CNN in Case 2 matched 

those in Case 1. However, the segmentation performance was significantly worse due to blurry 

boundaries of cracks and the presence of crack intersections. 

3.4.3 Case 3 

Case 3 represented the most challenging scenario in the current study, where a complex crack 

network combined with H-cracks and T-cracks (Benveniste et al., 1989) was adopted to test the 
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performance of the proposed method. The soil crack detection, locating and segmentation results 

from the Mask R-CNN and U-Net were displayed in Fig. 3-9(a) - (b). The detailed evaluation 

metrics of the Mask R-CNN for locating and segmentation were listed in Table 6. Compared with 

a noticeable decline in precision, recall and F1 score of U-Net performance, Mask R-CNN 

witnessed only a slight dropping in those metrics.  

 
Fig. 3-9 Soil desiccation crack detection results in Case 3 

Table 3-6 The locating and segmentation performance of the Mask R-CNN in Case 3 

Image No. Resolution APbb 

(%) 
AP bb 

50  
(%) 

AP bb 
75  

(%) 
APm 

(%) 
AP m 

50  
(%) 

AP m 
75  

(%) 
Fig. 8(a) 960×640 33.40 60.30 40.61 15.49 33.52 10.46 
Fig.8(b) 1280×960 22.64 52.08 19.46 11.17 37.60 5.89 

 

More specifically, in Fig. 3-9(a), the precision, recall and F1 score gained from Mask R-CNN 

were 79.85%, 92.72% and 85.81%, respectively. The precision was lower than the results in Case 

1 and Case 2, since several cracks were not able to be identified. Among those cracks not identified, 

there is one crack contacting with grass at the bottom left corner. Besides, three more small cracks 

around the intersection locations were not detected, which lowered the precision score of the Mask 

R-CNN algorithm. However, the high recall rate suggested that 92.72% were actual cracks within 

all predicted cracks. Compared with the Mask R-CNN results, the U-Net generated less 

satisfactory results. In the original image of Fig. 3-9(a), two bunches of grass could be seen at the 
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bottom. The U-Net regarded the grass as a crack and all pixels belonging to the grass were listed 

as crack, which led to a low score of precision (24.80 %). Meanwhile, the recall value from U-Net 

could still reach 93.62%, since most of the ground truth cracks were detected correctly. On the 

other hand, the F1 score was merely 39.18%, attributed to the poor precision score.  

Then, the locating accuracy of the Mask R-CNN was evaluated using APbb under various 

detection criteria. The APbb 
50  was 60.30% when the criterion was IoU=50%. With the criterion lifted 

to IoU=75%, the APbb 
75  was found to be 40.61%. Both locating accuracy values were slightly lower 

than those in Case 2. However, considering the complexity of the crack network in Fig. 3-9(a), the 

locating accuracy was reasonable. Moreover, the mean APbb for evaluating crack location results 

was 33.40%, which was due to the poor detection performance around the intersection area at 

IoU=75% condition. To evaluate the segmentation performance, APm, APm 
50 , and APm 

75  were 

calculated and their values were 15.49%, 33.52% and 10.46%, respectively. Though these three 

segmentation performance metrics appeared not to be quite high, the segmentation mask showed 

good accordance to the ground truth image. However, the algorithm was hard to achieve a pixel 

level overlapping on crack ending area and intersection area because these cracks were quite thin 

compared with all cracks shown in the Case 1 and Case 2. Since all errors had to be included in 

the segmentation metrics, the values of APm, APm 
50, and APm 

75 were not as high as expected.  

Fig. 3-9(b) demonstrated the crack network identification results on a rough and bumpy soil 

surface. From this image, the Mask R-CNN displayed an overall better performance to complete 

the task compared with the U-Net obviously, as several discontinued segmentations appeared in 

the U-Net processed image. Then, referring to the detection accuracy metrics, the Mask R-CNN 

got a precision of 65.33%, a recall of 75.45% and an F1 score of 70.14%. In comparison, the 

precision from U-Net was much lower (48.36%), with the recall and F1 score 77.15% and 59.45%, 

respectively. The comparison results further confirmed that the detection performance of the Mask 

R-CNN was superior to that of the U-Net in the case of complicated soil desiccation crack networks. 

Therefore, when more distractive objects (more scratches and uneven) emerged in the background, 

the Mask R-CNN would gain more advantage over the U-Net.  

As for the locating performance, the Mask R-CNN reached an accuracy of 52.08% (APbb 
50 ) under 

the loose detection criterion (IoU=50%). When the criterion became stricter (IoU=75%), the 

accuracy decreased to 19.46% (APbb 
75 ). Thus, the mean APbb was 22.64%, which was relatively low 

compared with all imaged in Case 1 to Case 2. During the detection process, the algorithm 
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generated a limited number of proposing bounding boxes and attempted to determine if there were 

cracks in them. When more distractions (i.e., scratches and other objects like cracks) appeared in 

the image, there were not enough bounding boxes to select the most accurate bounding box, which 

led to the lower locating performance. For the segmentation performance, the mean APm was 

11.17%, and the segmentation precision experienced a sharp reduction from 37.60% (APm 
50) to 5.89% 

(APm 
75) when raising the IoU threshold from 50% to 75%. The poor segmentation performance in 

this image showed that the current algorithm still needed more training to get used to a more 

complex crack network.  

When compared with Case 1 and Case 2, the general performance of both the Mask R-CNN 

and U-Net algorithms worsened noticeably in Case 3, which was primarily due to the much more 

complicated nature of soil desiccation cracks in this case. More intersections of soil cracks formed 

complicated crack networks, which imposed extra challenges to the algorithms. Besides, compared 

with the previous two cases, the presence of grass and uneven soil surface added extra difficulties 

to the crack detection, locating and segmentation. 

3.5 Discussion 

In the current study, the capability of the proposed Mask R-CNN algorithm was systematically 

evaluated to detect, locate, and segment individual soil cracks from solid color background images, 

impure background and complex crack networks. Meanwhile, the Mask R-CNN was also 

compared with the U-Net, a classical and mature deep learning algorithm that could achieve 

semantic segmentation but not instance segmentation. The results from the current study 

demonstrate that the Mask R-CNN could not only detect and segment soil desiccation cracks from 

the background but also locate cracks with bounding boxes and distinguish individual cracks in 

pixel-level accuracy using masks. Though the proposed Mask R-CNN algorithm was not compared 

with traditional IPTs, Xu et al (2021) made a comparison between U-Net and the traditional Otsu’s 

method. The results showed that the U-Net defeated the traditional method with a great advantage. 

Thus, it is safe to assume that the Mask R-CNN will perform better than traditional IPTs in 

identifying soil desiccation cracks. It should be noted that with the increasing complicity, the 

detection, locating and segmentation performances of the algorithm gradually deteriorate. 

Nevertheless, this research provides an initial baseline for applying the instance segmentation 

method in soil crack characterization. Therefore, future research can compare the soil crack 
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segmentation performance with the proposed algorithm. The factors that could affect the 

performance of the proposed algorithm are discussed in detail in the following sections:  

3.5.1 Low resolution from the mask generation module 

The adopted Mask R-CNN algorithm has a 28×28 initial resolution of the generated mask. Then, 

the mask was stretched to match the original image size. Therefore, the mask details are partially 

lost due to the image magnifying process, which led to a poor result in APm. In these successful 

Mask R-CNN applications (Yu et al., 2019; Yang et al., 2021), these objects (i.e., strawberry, 

cobbles) could be classified as convex polygons. During the image magnifying process, the detail 

loss of the outline can be minimized. However, for soil desiccation cracks, the complex shapes 

from soil intrinsic properties will make the crack shape unique and lots of details can be found 

along the outline of the cracks. When the masks are generated and magnified, it is hard to maintain 

high accuracy on segmentation results. Furthermore, since the final bounding boxes were 

calculated based on mask boundaries, magnified masks with insufficient precision could lead to 

reduced APbb values. He (2017), the inventor of the Mask R-CNN algorithm, mentioned that the 

28×28 resolution of the mask branch was enough for segmentation objects that appeared in the 

COCO dataset. But a higher-resolution mask branch such as 56×56 was required to achieve a better 

locating and segmentation accuracy for more detailed segmentation tasks. However, due to the 

hardware and training time (GPU memory) limitations, most scholars have to select 28×28 

unwillingly and this leads to impaired mask segmentation performance when an object has a 

complex irregular outline. Kim & Cho (2019) proposed a modification to the Mask R-CNN mask 

branch by improving the mask resolution to 56×56 when detecting cracks on the concrete surface. 

The segmentation accuracy has been improved significantly. 

 

3.5.2 The intersection of multiple cracks 

Many of the misdetections in Fig. 3-8(c) and Fig. 3-9(a)-(b) are around the intersections of 

multiple cracks. Kim and Cho (2020) also encountered the same issue when using the Mask R-

CNN to detect concrete cracks, where misdetections could be found around the intersection areas. 

Fig. 3-10 is an illustration of how soil crack intersections could affect the segmentation 

performance. In this figure, most cracks look like I-shaped strips. However, the length of a single 

crack is ambiguous based on different crack patterns. Therefore, when there are several crack 
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intersections in the crack network, cracks might be identified differently according to randomly 

generated proposal bounding boxes. For example, the height to width ratio of Crack 3 in Fig. 3-10 

(a) will be much smaller than the Crack 3 in Fig. 3-10 (b). Therefore, a rigorous soil desiccation 

crack annotation criterion shall be established beforehand. Liu et al (2013) and Cheng et al (2020) 

both adopted the criterion demonstrated in Fig. 3-10 (d) when they analyzed the quantification 

index of clayey soils. The criterion will bring more short cracks into the statistics results and will 

ignore how the single cracks developed a crack network. Therefore, the criterion of Fig. 3-10(b) 

or (c) was adopted in the current study. When using this criterion, Crack 2 in Fig. 3-10(b) and 

Crack 4 in Fig. 3-10(c) can be unambiguously identified as intact individual soil cracks regardless 

of the vertical or horizontal crack generated earlier. However, as an application of a deep learning 

algorithm, the dataset quality and size will influence the algorithm's accuracy. As a result, more 

studies are needed to determine which identification criterion could yield better locating accuracy 

within a much bigger crack dataset.  

 

 
Fig. 3-10 Possible crack identification patterns on the intersection area: (a) two cracks overlap 

at the intersection; (b) vertical crack as the main crack on the intersection; (c) horizontal crack as 

the main crack on the intersection; (d) all cracks serve as main cracks. 

3.5.3 Image shooting angle 

As a deep learning algorithm focusing on the detection, locating, and segmentation of soil 

desiccation cracks from images, the ideal shooting angle is perpendicular to the crack opening to 

ensure that clear and sharp edges of cracks could be captured. When photographing 

perpendicularly, the image distortion can be minimized and key features of cracks could be 

maintained. It is mentioned in the “Mask R-CNN Architecture” Section that “the backbone of the 
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Mask R-CNN will be trained to extract features such as edges of soil crack (Yu et al., 2019). These 

features will be used to discard non-crack pixels in crack detection process”. If the image is taken 

from a large inclined angle, the feature of cracks observed will be different from a vertical angle, 

which could result in misdetection. In addition, if the geometric characterization needs to be further 

analyzed, the errors from image distortion can be reduced when photographing perpendicularly. 

However, it is hard to obtain an intact crack network with all crack walls parallel to the shooting 

direction, since the progression of soil cracks is unpredictable. For instance, in Fig. 8(a), the 

internal sidewall of the crack could be found highlighted with the red box in the image, where the 

U-Net detected the internal sidewall of the crack as the background falsely. Since the U-Net could 

not correctly identify ground-truth crack boundaries, the crack segmentation showed a 

discontinued shape in Fig. 8(a). To overcome this challenge, more crack images photographed 

from various angles shall be added to the dataset and these images require a detailed annotation 

process to mark all crack features for training. 

3.6 Conclusion 

In the current study, a state-of-the-art deep-learning algorithm Mask R-CNN was introduced 

for clayey soil desiccation crack characterization. The Mask R-CNN could automatically detect, 

locate and segment soil desiccation cracks with sufficient accuracy and efficiency. The following 

conclusions could be obtained: 

(1) The Mask R-CNN algorithm trained, validated, and tested on a soil crack dataset containing 

1200 images. The precision, recall and F1 score were 73.29%, 82.76% and 77.74%, respectively. 

The algorithm had a mean locating accuracy (APbb) of 64.14% and a mean segmentation accuracy 

(APm) of 47.59%.  Moreover, the algorithm was implemented and achieved an overall detection 

speed of 2.2 FPS. 

(2) In general, the algorithm could satisfactorily detect, locate, and segment soil desiccation 

cracks on solid color soil background, impure background and with a complex crack network. In 

terms of the detection accuracy, the F1 score in the cases of solid color background, impure 

background and complex crack network were around 90%, 88% and 82%, respectively. The 

locating accuracy in the cases of solid color background, impure background and complex crack 

network were around 70%, 50% and 30%, respectively. And the accuracy metrics in segmentation 
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were about 60%, 25% and 13% in the cases of solid color background, impure background and 

complex crack network, respectively.  
(3) The Mask R-CNN demonstrated better performance over the U-Net in soil crack detection, 

locating and instance segmentation, especially in face of complex crack networks. When the soil 

background color was solid, the U-Net achieved a similar accuracy in crack segmentation 

performance. However, when the background became impure with more distractions, the accuracy 

of U-Net decreased from 90% to about 70%. The U-Net got only about 40% segmentation accuracy 

when applied on a complex soil crack network.  
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CHAPTER 4 Deep Learning Based Approach for Automated 

Characterization of Large Marine Microplastic Particles 

4.1 Introduction 

The United Nations Environment Programme has reported that plastic pollution has been listed 

as one of the top environmental issues by Mason et al. (2016). Due to the limited disposal 

capability, most waste plastic is accumulated by landfilling. During this period, the plastic chunk 

will degrade or fragment into small pieces through mechanical, thermal oxidation, hydrolysis, and 

biological processes. These various processes make small plastic particles have unique shapes 

(Bertoldi et al., 2020). When their sizes are less than 5 mm, the plastic particles are defined as 

microplastics (MPs) (Arthur et al., 2009). So far, MPs have been found in terrestrial and aquatic 

ecosystems, from the inland water system to soil profile, from the ocean surface to sediment, and 

from pole to pole (Ivar and Costa, 2014). Once the MPs enter the oceans, they can be transported 

a long distance by ocean currents and wind. Moreover, MPs can remain in the water for decades, 

which makes them perfect carriers of toxic hydrophobic compounds absorbed from the ocean 

(Nobre et al., 2015) and pathogenic organisms (Barboza et al., 2018). Besides, due to their small 

size, these plastic pieces could be easily swallowed by various marine organisms and transferred 

into the food chain, ultimately ending in human beings (Sharma and Chatterjee, 2017). Therefore, 

the microplastic pollution issues have attracted an intensive spotlight from experts in the marine 

environment, marine biology, and coastal ecology. 

In efforts to maintain a safe marine environment, European Union (EU) passed the Marine 

Strategy Framework Directive (MSFD) and requires all member nations to monitor and classify 

MPs based on their physical characteristics, including color, brightness, size, morphology, and 

polymer type (Gago et al., 2016; Gauci et al., 2019). Since these characteristics are closely related 

to their origin, degradation rate, transportation processes, impacts on the environment, and 

destinations (Hidalgo-Ruz et al., 2012; Zhang et al., 2017; Kooi and Koelmans, 2019), it is 

essential to characterize and classify MPs (Wang et al., 2019). Currently, the image capture 

methods for MPs with relatively large sizes (up to 5 mm) mainly include naked eye with a digital 

camera (1 mm to 5 mm) (Lorenzo-Navarro et al., 2020), stereo microscope (0.3mm to 5mm) 

(Hanvey et al., 2017), and digital holographic imaging (0.1 to 5 mm) (Zhu et al., 2021a). For small 

MPs at a micrometer level, Raman micro-spectroscopy (10-300 µm) (Lenz et al., 2015), 
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fluorescent dyes (20-100 μm) (Lv et al., 2019), and staining (Hata and Jiang., 2021) have been 

utilized. Images captured with relatively fewer MPs are typically processed using naked eyes to 

obtain information about morphology. Then MPs will be classified, analyzed, and recorded. (Shim 

et al., 2017). Benefiting from the rapid development of computer and information technologies, 

optical microscopy, scanning electron microscopy, fluorescence microscopy, and spectral analysis 

from Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, pyrolysis gas-

chromatography mass-spectrometry, and energy dispersive X-ray spectroscopy are increasingly 

deployed to analyze and interpret MPs data (Cowger et al., 2020). Mukhanov et al. (2019) used 

ImageJ to convert RGB images into binary images and then classify the microplastic into four 

categories: rounded, irregular, elongated, and fiber, based on their morphometry parameters. In 

addition, with the help of a hyperspectral image capture system employing infrared spectrometry 

and the Raman technique, Serranti et al. (2018) applied multivariate Image Analysis and partial 

least squares discriminant analysis to identify the plastic material and shape. However, the high 

cost and limited accessibility of such expensive chemometric tools prohibit broader applications. 

Gauci et al. (2019) developed an algorithm using the least-squares method based on the MATLAB 

platform to conduct dimension measurements and surface roughness evaluation of MPs collected 

on the island of Malta in the Central Mediterranean. The color of the microplastic was recorded 

by calculating the Mean Square Error (MSE) of value in Red (R), Green (G), and Blue (B) channels. 

Although these image processing methods can independently complete required tasks like border 

detection and area calculation, these methods still rely on pre-designed algorithms and are 

regulated by human insight. Therefore, it is necessary to develop new methods for the MPs 

detection and classification processes with sufficient accuracy and generalization ability.  

In the 1950s, with the development of recognition in the human learning process, the definition 

of artificial intelligence (AI) was first initiated (Russell and Norvig., 1995). AI involved creating 

machines that could solve problems requiring human intelligence. The machine learning method 

partially solved the task, which included giving data, generating models, and making decisions. 

Within this stage, a series of famous algorithms such as linear regression, support vector machine 

(SVM), K-nearest neighbors (KNN), Naive Bayes, etc (Hart et al., 2000). Kedzierski et al. (2019) 

adopted the KNN algorithm to detect the chemical nature of the MPs based on the FTIR- ATR 

spectra. The automated classification method could improve the efficiency of inspecting these 

spectra. Bianco et al. (2020) applied SVM to differentiate diatom and MPs based on 3D coherent 
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images using the holographic imaging technique. Meyers et al. (2022) adopted Nile red staining 

method and decision tree algorithms to classify seven different MPs based on their materials. As 

the need for more powerful algorithms proliferates, deep learning algorithms begin to stand out in 

the machine learning field. Inspired by vision mechanisms of the visual cortex in human eyes, a 

neural network focused on feature extraction was developed and defined as the convolutional 

neural network (CNN or CovNet) (Fukushima and Miyake, 1982; LeCun et al., 1989). After 

development in the past decades, CNN has become one of the most widely used architectures in 

deep learning. A CNN module normally consists of a series of convolutional and pooling layers, 

which can effectively capture the grid-like topology features of images while requiring less 

computational effort. Compared with traditional neural networks, CNNs offer more flexibility to 

users with different accuracy demands since they can be built by combining CNN modules (Cha 

et al., 2017). CNNs could consist of more than 100 layers to build a deeper network. So far, CNNs 

have brought about breakthroughs in the processing of images, video, speech, and audio by 

improving the accuracy and efficiency to a new level, which was not well addressed in traditional 

AI studies (LeCun et al., 2015). Girshick et al. (2015) developed the Fast R-CNN by changing 

multi-stage training into multi-task training. Followed by the Fast R-CNN algorithm, Ren et al. 

(2017) developed the Faster R-CNN to improve the algorithm efficiency. A lightweight Region 

Proposal Network (RPN) was adopted to replace the selective search function inherited from the 

R-CNN algorithm (Choi et al., 2022). The advancement of the CNN algorithms has embraced the 

new object detection algorithm with more functions. He et al. (2017) proposed the mask region 

conventional neural network (Mask R-CNN) based on Faster R-CNN by attaching a binary mask 

to the detected object, which could help highlight each target from the background with masks in 

varying colors. Mask R-CNN could achieve instance segmentation, in which every single object 

within the same category could be recognized and distinguished. Therefore, Mask R-CNN could 

simultaneously achieve a threefold function including object classification, object location 

detection, and instance segmentation. The state-of-the-art pixel-level instance segmentation of 

Mask R-CNN was soon applied in medical science, industrial robots, animal husbandry, structure 

health monitoring, etc. (Johnson, 2018; Yu et al., 2019; Zhao et al., 2020; Xu et al., 2020). For 

instance, Johnson (2018) demonstrated that Mask R-CNN could be used for cell nuclei 

segmentation under microscopic images. Zhao et al. (2020) developed a tunnel image capture 

system using the Mask R-CNN algorithm to detect moisture marks in shield tunnel lining. 
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However, regarding the characterization of MPs, only a few studies using CNN-based deep 

learning methods have been reported. Lorenzo-Navarro et al. (2020) developed a deep learning 

method by combining U-Net and VGG16 neural networks, counting and classifying common MPs 

in laboratory conditions. However, detection results were obtained from a pure white background 

and good illumination conditions. No MPs embedded in the complex background were tested in 

the study. Wegmayr et al. (2020) compared the instance segmentation accuracy of microplastic 

fiber microscopic images by applying Mask R-CNN and Deep Pixel Embeddings (DPE). The 

study showed that in complex tangled cases, DPE showed better performance. However, their 

work only focused on fiber MPs detection and segmentation performance. No MPs classification 

function was built in the algorithm. Zhu et al. (2021b) developed an HC-CNN algorithm to classify 

microplastic using a hologram image dataset. The lightweight algorithm achieved high accuracy 

and efficiency. However, the algorithm could not offer more classification information. So far, no 

other studies have been reported about using the Mask R-CNN algorithm to characterize MPs.  

In this study, a Mask R-CNN based deep learning model was developed and used for MPs (1-

5 mm diameter) classification, localization, and segmentation. A deep learning dataset of MPs was 

constructed and utilized to train and validate the Mask R-CNN model using only optical cameras 

and available image processing software. The developed model's classification, localization, 

segmentation, and computational performances were reported. Then, the validity of the trained 

model was tested for the classification, localization, and segmentation of real MPs with different 

morphologies and at various scales. Meanwhile, the MPs were also presented against white and 

real-world backgrounds to demonstrate the Mask R-CNN model's validity. 

4.2 Methodologies 

4.2.1 Mask R-CNN Architecture 

The Mask R-CNN model adopted in this study is backboned by the Resnet 101 network (Wu 

et al., 2019), a 101-layer residual neural network. Resnet 101 is divided into five stages and serves 

as the convolutional layer to extract features directly from images of MPs. Each stage contains 

convolution and an identity block. Furthermore, each identity block consists of several convolution 

layers. 

Using the Pytorch platform, the training of this model is initiated via transfer learning, which 

loads a pre-trained model weight based on the COCO dataset (0.3 million images and 80 categories) 
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(Ren et al., 2017). Transfer learning could save training time since the pre-trained weights can be 

directly utilized to initialize the training process. Therefore, it has been widely adopted in deep 

learning, especially in cases where the number of images for training is limited (Pan and Yang., 

2009). 

The architecture of the Mask R-CNN model is shown in Fig. 4-1. Firstly, feature maps are 

generated after the backbone Resnet 101 CNN processes the input raw images. Then, the feature 

maps are fed into lightweight region proposal networks (RPNs) to detect candidate objects with a 

sliding window and to generate regions of interest (RoIs) with bounding boxes (anchors). The 

actual sizes of these boxes are determined by the anchor scales and ratios, which are essential 

hyperparameters in the model tuning process. The RoIs are further classified as foreground or 

background with scores, and NMS (no maximum suppression) is applied to keep only high-score 

ones (Neubeck and Van Gool, 2006). Then, the RoI Align network is utilized to adjust the 

dimension of the RoIs generated by RPN and produce a fixed-size feature map. In the meantime, 

followed by a three-branch-paralleled prediction network, the functions of classification, object 

localization, and instance segmentation are achieved. The Fully Connected (FC) layers will pass 

the feature map to a normalized exponential function (SoftMax) and a bounding box regression, 

giving the classification and object detection results, respectively. The SoftMax function is widely 

applied in machine learning classification problems, which gives the probability of target objects 

belonging to a specific category. A Fully Convolution Network (FCN) is utilized to generate a 

binary mask, which could highlight the detected objects. The generated masks can be further used 

to determine the dimensions of objects, which is out of the scope of the current study.  

4.2.2 Dataset preparation and preprocessing 

With the influence of both wind and ocean currents, the Oahu island's windward side (east coast) 

has suffered from the MPs pollution on the beach areas. In total, 400 onsite MPs images (JPG 

format with a resolution of 3008×1688 pixels) were taken by a Sony α7 Mark II digital camera 

from five different beaches on Oahu Island, which can be observed in Fig. 4-2. These images were 

taken under daylight and natural background (sand, grass, and water on the beaches in Fig. 4-2).  
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Fig. 4-1 Overview of the Mask R-CNN architecture 

 
Fig. 4-2 Microplastics sampling locations: (a) Kahuku beach; (b) Kahana bay beach; (c) 

Kailua beach; (d) Waimanalo beach; (d) Sandy beach. 
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Then MPs were fed into US No.4 (4.76 mm) and No.20 (0.85 mm) sieves, and MPs left on the 

No.20 sieve were sampled for laboratory image capture. The laboratory MP image capture was 

carried out within a LED illuminated mini photo studio with the same digital camera. The LED 

lights have a color temperature of 6500K, the same as daylight. Before image capture, the MPs 

samples were washed, disinfected, and oven-dried at a low temperature. These samples have been 

humanly inspected to confirm they are microplastics. Those suspects have been tested with Raman 

spectroscopy to eliminate the plant and marine creature residues. The Raman spectroscopy of a 

low-density polyethylene (LDPET) MP particle is shown in Fig. 4-3.  

 
Fig. 4-3 Raman spectra of low-density polyethylene (LDPET) MP particle 

Each time at least 20 individual MP particles were placed on a white background within the 

mini-studio. Once the image was taken, these MPs were discarded and new MPs particles were 

placed in the mini-studio until 100 laboratory capture images were finished. All 500 raw images 

from onsite and laboratory capture were cut into small patches with a uniform resolution of 

512×512 via a Python program, and 1500 patches with intact MPs were finally selected (Han et 

al., 2022). Previous studies showed that crucial features of MPs could be kept and the training 

efficiency was superior at this resolution (Yu et al., 2019). According to the classification methods 

mentioned by Hartmann et al. (2019), Mukhanov et al. (2019), and Lorenzo-Navarro et al. (2020), 

the MPs were classified as fiber, fragment, pellet, and rod based on their morphological 

characteristics as shown in Fig. 4-4. Among these 1500 patches (512×512 resolution), there were 

386 fibers, 1015 fragments, 844 pellets, and 322 rods. 1500 patches were duplicated by randomly 

choosing one of four common data augmentation methods (left-right flipping, up-down flipping, 
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rotation 90°, and scaling) (Han et al., 2022). Thus, the final MP dataset possessed 3000 images of 

512×512 resolution. 

    
 (a) (b)  

    
 (c) (d)  

Fig. 4-4 Sample images from the training dataset: (a) MP in an aqueous environment; (b) MP 

on the beach sand; (c) MP on a supratidal area; (d) MP on a white background. 

Before the dataset was randomly divided into three subsets: training, validation, and test, the 

MPs dataset was annotated using the VGG Image Annotator (Dutta and Zisserman, 2019). Besides, 

a unique dataset named test-complex was prepared to test the algorithm performance on images 

with different scales and backgrounds. The images in the test-complex dataset have never been 

used for training and validation. The details for each subset are displayed in Table 4-1. These 

resolutions selected in the test-complex dataset were similar to the general image size obtained 

from digital cameras, mobile phones, and social media platforms. The test-complex dataset 

included images captured under complex backgrounds and illumination conditions to simulate 

real-world soil and an aqueous environment where microplastic could be spotted. 
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Table 4-1 Image details in the MPs dataset 

Dataset Name Image 
amount Image resolution Image background 

Training 2100 
512×512 white, sand, natural soil, and 

water Validation 600 
Test 300 

Test-complex 180 
512×512, 600×400 

1504×844 and 
3008×1688 

sand, natural soil, and water 

 

4.2.3 Mask R-CNN model training and validation 

The Mask R-CNN model was trained and tuned on Google Colaboratory (Colab) with a Tesla 

P100 GPU (16 GB graphic memory). Synchronous stochastic gradient descent (SGD) was used to 

train the model and the weight decay and momentum were set as 0.0001 and 0.9, respectively. The 

batch size of the training dataset was set as 4. In order to ensure the validity of the deep learning 

training parameters, the parameter selection refers to Table 4-2, which summarizes recent research 

adopting the same algorithm structure (Hou et al., 2020; Chen at al., 2020; Kim et al., 2019; Nie 

at al., 2020; Politikos et al., 2021).  

Table 4-2 Parameters summary from research papers with the same algorithm structure 

Author 
Minimum 

Image 
dimension 

Weight 
decay Momentum Learning  

rate 
Batch 
size 

Training 
epochs 

GPU 
amount 

This study 512 1×10-4 0.9 1×10-3~ 
1×10-5 4 60 1 

Kim et 
al(2019) 800 1×10-4 0.9 1×10-3 1 50 4 

Chen et 
al(2020) 648 4×10-5 0.9 5×10-11 32 75 1 

Hou et 
al(2020) 512 1×10-5 0.9 2×10-3 8 160 1 

Nie et 
al(2020) 768 1×10-4 0.9 1×10-3 1 - 1 

Politikos et al 
(2020) 448 1×10-3 - 1×10-3 4 40 1 
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All the backbone CNN layers were frozen for the first 20 epochs. Only the network head, which 

contained the classifier, bounding box generator, and mask generator was trained with the pre-

trained COCO dataset weights using an initial learning rate of 0.001. For the following 20 epochs, 

the learning rate was reduced by ten times and the first three stages of the Resnet 101 were 

activated to continue the training process. Finally, the learning rate was decreased by ten times 

again, and all five stages of the Resnet 101 were activated to train the model for another 20 epochs. 

All hyperparameters (learning rate, weight decay, scale of anchor, anchor ratio, and NMS ratio) 

were fine-tuned to achieve higher accuracy and faster processing speed. The whole training 

process took less than 8 hours to complete.  

4.3 Model Evaluation 

To evaluate the performance of the proposed Mask R-CNN algorithm in microplastic 

classification, localization, and segmentation, the U-Net algorithm (Ronneberger et al., 2015) was 

also trained and compared with the Mask R-CNN. The U-Net was designed based on the Fully 

Convolutional Network (FCN) as a famous semantic segmentation algorithm. The U-Net 

classification and segmentation function has proven very effective in microplastic segmentation 

(Lorenzo-Navarro et al., 2020; Lee et al., 2022). 

4.3.1 Loss function 

The loss function was a direct metric to measure the deviation between the prediction results 

and the ground truths labeled by the dataset maker. Properly selecting the loss function can benefit 

the training process by updating the model weights effectively, contributing to the final model 

performance. Therefore, the target of deep learning algorithm training was to decrease the 

deviation as possible.  

Since the Mask R-CNN algorithm could achieve localization, classification, and segmentation 

functions, assessing the algorithm from these three aspects is necessary. The loss function 

employed in Mask R-CNN is a multi-task function shown in Eq.(1), which includes three parts: 

the position regression loss of the bounding box Lbox (localization error), the classification loss Lcls 

(classification error), and the segmentation loss of mask Lmask (segmentation error)calculated by 

pixel accuracy  (He et al., 2017).  

 box cls maskL L L L= + +   (1) 
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The calculation for the classification loss (Lcls), the regression loss of the bounding box (Lbox), 

and the segmentation loss of mask (Lmask) is listed in Eq.(2) to Eq.(5): 

 ( ) 1, ( )box i i i iL t t L smooth t t∗ ∗= −  (2) 

  ( )
2

1

0.5 1

0.5,

x if x
L smooth x

x otherwise

 , <= 
−
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  ( ) ( ) ( ), log 1 log 1cls i i i i i iL p p p p p p∗ ∗ ∗= − − − −  (4) 
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ij
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m
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where ti is a vector containing the bounding box location and size (x coordinate, y coordinate, 

width, and height), while ti* is the vector for the ground truth bounding box. m2 is the mask 

resolution used in the algorithm, here is 28 by 28 pixels. k represents the kth class object in the 

dataset and here k is four due to fragment, pellet, rod, and rod shall be classified. sij and sij* are the 

binary value (0 or 1) in the predicted mask and ground truth mask, respectively. 

As for the U-Net, the dice loss was selected to assess the segmentation of the U-Net (Sudre et 

al., 2017). The calculation was shown in Eq.(6): 

 
2

1 ( )
Prediction result Ground truth

L Dice coefficient
Prediction result Ground truth

λ
λ

×  ∩  +
= −  

 +  +
 (6) 

The dice coefficient is a widely used metric in the computer vision community to calculate the 

similarity between two images (Jadon, 2020). The λ is a minor constant to avoid the numerical 

issue of dividing by zero. In this case, λ was set as 10-7. 

The loss curves of both Mask R-CNN and U-Net during the training and validation process are 

shown in Fig. 4-5. The green lines represent the training and validation loss of Mask R-CNN. The 

training loss was initially 0.5746 and then dropped sharply to 0.3068 after the first five epochs. 

The validation loss decreased even faster and reached 0.1507 after five epochs. As the training 

process continued, the training loss finally fluctuated slightly around 0.12 and the validation loss 

around 0.10. The U-Net loss could be obtained from the blue lines in Fig. 4-5. The training loss 

started from 0.5129 and decreased to 0.10 in about ten epochs. Then the training loss smoothly 

decreased to 0.07 at the training end. Compared with the training loss, the validation loss 



122 

 

experienced several fluctuations during the decreasing process. The validation loss finally ended 

up at around 0.05.  
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Fig. 4-5 Loss curves during the model training process 

4.3.2 Localization performance 

For Mask R-CNN, the algorithm could generate bounding boxes to highlight the location of the 

targets to be found. The accuracy of the bounding box could be used to evaluate the localization 

performance. However, before the evaluation results of the proposed algorithm, it is necessary to 

define what is correct localization. In this study, the intersection over union (IoU), a measurement 

based on Jaccard Index, was used as a criterion to determine if the localization is correct (Padilla 

et al., 2020). The calculation process is illustrated in Fig. 4-6.  

 
Fig. 4-6 Diagram of intersection over union (IoU) 
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The area of overlap is the intersection of the ground truth bounding box and the prediction 

bounding box. The area of union is the total area covered by both bounding boxes. Therefore, the 

IoU value should fall between zero and one. Furthermore, zero represents prediction results that 

have no overlap with ground truths. In contrast, one represents that prediction results and ground 

truths reach a 100% overlap. The most common metric to measure localization accuracy is the 

average precision of the bounding box (APbb). However, with different IoU values, the APbb can 

vary a lot. In order to evaluate the algorithm performance comprehensively, three different average 

precision values are adopted here: APbb
50, APbb

75 , and APbb. The APbb
50 indicates the average precision 

when IoU=50%. This value is always regarded as localization accuracy under a loose localization 

criterion. In comparison, APbb
75  represents the average precision when IoU =75%, which adopts a 

stricter localization criterion than APbb
50. The APbb is the mean value of ten average precision values 

where IoU continuously increases from IoU=50% to IoU =95% with a step of 5%.  

Overall, the Mask R-CNN achieved APbb
50=99.94%, APbb

75=99.63%, and APbb=91.36% on the 

training dataset in this study. The results were much better than a similar application of Mask R-

CNN on marine litter detection (Politikos et al., 2021), where the APbb
50 and the APbb

75 were around 

76%. On the other hand, the U-Net could not provide the localization module to locate targets. 

Thus the localization performance could not be compared between the U-Net and Mask R-CNN.  

4.3.3 Classification performance 

For Mask R-CNN and U-Net, the precision (P), recall (R) and F1 score were used to evaluate 

the classification performance. These metrics were calculated as follows:  

 TPP
TP FP

=
+

  (7) 

 TPR
TP FN

=
+

 (8) 

 2 precision recallF1 score
precision recall
× ×

=
+

  (9)      

For example, during the classification of a microplastic fiber, TP (true positive) denotes the 

number of fiber pixels that are classified as fiber correctly. FP (false positive) represents the 

number of fiber pixels classified as other MP types (fragment, pellet, or rod). FN (false negative) 

denotes the pixels of other MP types (fragment, pellet, or rod) classified as fiber pixels. As the 
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precisions for all four categories (fiber, fragment, pellet, and rod) are calculated, these precisions 

will be averaged to obtain the final precision of the algorithm. Similarly, the final recall can be 

calculated, and the F1 score can be acquired. 

In this study, the Mask R-CNN obtained precision, recall, and F1 score of 92.40%, 94.40%, and 

93.39%, respectively, based on the training dataset. In comparison, the U-Net reached a precision 

of 93.70%, a recall of 96.32%, and an F1 score of 94.99% using the same training dataset. The U-

Net appeared to have a slightly better classification performance based on the dataset. When 

comparing these classification metrics with other research on the classification of MPs, Lorenzo-

Navarro et al. (2020) achieved a precision of 98.17% and a recall of 98.11% in MPs classification 

using a 2-stage modified U-Net algorithm.  

4.3.4 Segmentation performance 

Similar to the localization performance, the IoU was also adopted to determine a correct 

segmentation for Mask R-CNN. The metrics APm 
50, APm 

75 , and APm were used to evaluate the 

segmentation performance of the algorithm.  

To evaluate the microplastic segmentation performance of U-Net, the mean intersection over 

union (MIoU) was selected as an indicator in this study (Garcia-Garcia et al., 2018).  
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Where n is the total classes annotated in the dataset, which is four in this study; pii is the number 

of pixels correctly recognized; pij equals the number of pixels that should be category i but have 

been incorrectly predicted as category j; pij equals the number of pixels in category j but have been 

mislabeled as category i. 

In the current study, the Mask R-CNN was able to complete the segmentation of MPs with APm 
50

=99.60%, APm 
75= 88.40% and APm = 79.90% based on the training dataset. The MIoU obtained 

from U-Net on the training dataset was 90.75%, higher than the MIoU reported by Wegmayr et al. 

(2020) in an MP fiber segmentation task using the Mask R-CNN. 

4.3.5 Computation performance 

To check the computational performance of the trained Mask R-CNN model, the test dataset 

with 250 images, was fed into both networks. With the acceleration of the Tesla P100 GPU, the 
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Mask R-CNN algorithm completed the detection in 20.0s, which is about 12.5 frames per second 

(FPS). Meanwhile, the U-Net completed the task in 14.9s and achieved an FPS of 16.8. The overall 

processing speed for the two algorithms was acceptable in this study. 

4.4 Classification, Localization, and Segmentation Results 

Two cases were analyzed to assess the performance of the Mask R-CNN and the U-Net 

algorithm for automated MPs localization, classification, and segmentation. The images used in 

Case 1 came from the “Test” dataset (see Table 1), which contained 250 MPs images with white 

backgrounds. This was an ideal scenario where the boundaries and texture details could be easily 

observed. The images used in Case 2 were from the “Test-complex” dataset (see Table 1), where 

the MPs had a more complex background and larger resolution. It was apparent that Case 2 was 

more complicated and represented more real-world scenarios where MPs were often present (such 

as beach areas). These two cases represented gradually more sophisticated cases for localization, 

classification, and segmentation of MPs. The algorithm performance of both Mask R-CNN and U-

Net were displayed and compared.  

4.4.1 MPs Characterization Against White Background (Case 1) 

Case 1 demonstrated the MPs characterization results against a white background using Mask 

R-CNN and U-Net. In total, nine sets of typical prediction outputs from both algorithms and the 

original images are listed in Fig. 4-7 (a)-(i). Among these nine images, Fig. 4-7 (a)-(d) show MPs 

with similar particle sizes, whereas Fig. 4-7 (e)-(i) show those with varying particle sizes. From 

visual evaluation, both algorithms achieved satisfying performance in characterizing MPs. Then, 

quantitative metrics were calculated to compare the performances of these two algorithms, as 

shown in Table 4-3.  

Table 4-3 Performance evaluation for both Mask R-CNN and U-Net in Case 1 

 Localization 
(%) 

Classification 
(%) 

Segmentation 
(%) 

Mask R-CNN APbb APbb
50 APbb

75 Precision Recall F1 APm APm 
50 APm 

75 
92.7 99.3 99.3 93.30 95.40 94.34 82.60 98.50 83.60 

U-Net - Precision Recall F1 MIoU 
- 90.50 96.10 93.20 87.30 
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(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

  
(f) 

 
(g) 
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(h) 

 
(i) 

Fig. 4-7 Localization, classification, and segmentation result of multiple MPs against a white 

background (Case 1): (a) fibers of similar sizes;(b) fragments of similar sizes;(c) pellets of 

similar sizes; (d) rods of similar sizes; (e) fibers of varying sizes;(f) fragments of varying 

sizes;(g) pellets of varying sizes;(h) rods of varying sizes;(i) mixed particles of varying sizes. 

For the Mask R-CNN outputs in Case 1, the algorithm had an outstanding performance in 

localization, classification, and segmentation of all four types of MPs. Regarding the localization 

performance, bounding boxes were adopted to show the location of the MP particles, which can 

be seen in Fig. 4-7 (a)-(i). All MP particle locations were successfully highlighted, except for one 

noticeable flaw in Fig. 4-7 (h), where only part of the large pellet was enclosed in the bounding 

box. In addition, it seemed the MP particle size had little influence on the localization performance. 

Table 4-3 shows that the algorithm achieved APbb=92.7%, APbb
50=99.30% and APbb

75=99.30%, 

demonstrating superior precision in locating MPs. The minor errors were not even notable to naked 

eye.  
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Regarding the classification performance, the Mask R-CNN generated labels with classification 

confidences on the top of the bounding boxes for classification performance. All MPs were 

classified successfully with high classification confidences, which were shown in Fig. 4-7 (a)-(i). 

The algorithm achieved over 99% confidence in classification results. More specifically, the 

precision was 93.30% and recall was 95.40%, which resulted in an F1 score of 94.34%, shown in 

Table 4-3.  

As for the segmentation performance, the masks in various colors were applied to segment each 

MP particle. Most masks were placed precisely over the MPs even though the particle boundaries 

were hard to predict. The notable errors appeared in Fig. 4-7 (e), (f), and (h), where the edge of 

the fiber particle, the end of the rod, and the upper part of the pellet were not precisely segmented. 

From Table 4-3, the segmentation performance metrics showed that APm=82.6%, APm 
50=98.50% 

and APm 
75=83.60%. Understandably, as the segmentation criterion increased from IoU=50% to 

IoU=75%, the average segmentation precision decreased from 98.50% to 83.60%. Still, the metrics 

were sufficiently superior to segment all MPs against a white background. Furthermore, Fig. 4-8 

illustrates the detailed segmentation performance for each MP category. The fiber particles had 

the lowest segmentation precision (51.51%), which was attributed to the thin fiber and 

unpredictable shapes (L-shape, U-shape, I-shape, and S-shape). Then, the second-lowest was from 

rod particles, where the segmentation precision was 86.08%. The errors could also be attributed to 

the thin shape of the rod particles. As for fragment and pellet particles, the segmentation precisions 

were higher than 97%, undoubtedly deemed outstanding.  
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Fig. 4-8 Detailed segmentation performance per microplastic category of Case 1 
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For the U-Net outputs in Case 1, the algorithm could also accurately classify and segment MPs. 

Fiber, fragment, pellet, and rod pixels were colored in red, green, yellow, and blue, respectively. 

In terms of classification performance, the U-Net could classify most particles with similar sizes, 

which can be seen in Fig. 4-7(b), Fig. 4-7(c), and Fig. 4-7(d). Nevertheless, when classifying fiber 

particles of similar sizes, the ends of several fibers were misclassified as rods. The 

misclassification in Fig. 4-7(a) can be seen in the blue part. The situation seemed to be worse when 

the MP particle sizes increased because more errors in classification were found in Fig. 4-7(e), Fig. 

4-7(f), and Fig. 4-7(h). More specifically, in Fig. 4-7(e), the straight parts of one fiber particle 

were misidentified as rods and were colored blue. Then in Fig. 4-7(f), parts of a large rod were 

classified into fragments and fiber due to the texture of the rod surface. Moreover, the central part 

of a large pellet was identified as fragments when uneven surface texture appeared on the pellet in 

Fig. 4-7(h). The U-Net generally achieved a precision of 90.50%, a recall of 96.10%, and an F1 

score of 93.20%. Compared with the classification results of Mask R-CNN, the performance of 

the U-Net was slightly worse. However, the differences in classification metrics between these 

two algorithms were minor. As for the segmentation, since the U-Net algorithm classifies and 

segments targets on a pixel level, the segmentation errors were the same as the classification ones 

in Fig. 4-7. The U-Net gained a segmentation performance MIoU =87.30%, shown in Table 4-3. 

More specifically, the detailed segmentation performance for each category was listed in Fig. 4-8. 

It was interesting that the fragment had the highest segmentation performance, followed by pellet, 

rod, and fiber, demonstrating the same trend as Mask R-CNN. Overall, the results showed that 

fiber would be the most challenging category to characterize by the U-Net in the current study. 

 

4.4.2 MPs Characterization Against Natural Background (Case 2) 

Case 2 demonstrated the MPs characterization results against a natural background when Mask 

R-CNN and U-Net algorithms were applied. Three sets of prediction outputs and their original 

images were displayed in Fig. 4-9 (a)-(c), demonstrating MPs' characterization on the sand, on 

natural soil, and in water. Fig. 4-9 (a) showed that twenty-nine MP particles composed of all four 

categories were present on the surface of natural beach sand. In Fig. 4-9(b), eight MP particles 

were present on the surface of natural soil sediment. In Fig. 4-9(c), nine MP particles floated on 

the water surface in a clear container. Based on the visual evaluation, the Mask R-CNN had a 
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better performance than the U-Net, since most particles from U-Net outputs were neither classified 

nor segmented. The detailed evaluation metrics of both Mask R-CNN and U-Net for Case 2 are 

summarized in Table 4-4.  

Table 4-4 Performance of both Mask R-CNN and U-Net in Case 2 

Metrics Localization (%) Classification (%) Segmentation (%) 

Mask R-
CNN 

APbb APbb
50 APbb

75 Precision Recall F1 score APm APm 
50 APm 

75 

67.50 84.30 84.30 78.70 80.90 79.78 59.5
0 

84.3
0 

63.7
0 

U-Net - Precision Recall F1 MIoU 
- 30.60 48.50 37.50 10.80 

 

 
(a)  

 
(b) 
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(c) 
Fig. 4-9 Localization, classification, and segmentation result of multiple MPs against a natural 

background (Case 2): (a) sand background;(b) natural soil background;(c) water background. 

For the Mask R-CNN performance in Case 2, the algorithm generally did well in locating, 

classifying, and segmenting all four types of MPs. However, compared with Case 1, several 

particles could not be located, classified, or segmented correctly due to the increased complexity. 

For the localization performance, the Mask R-CNN performed well when the background was 

beach sand since all MP particles were identified precisely in Fig. 4-9(a). Then, when the MPs 

appeared on the surface of natural soil sediment, the Mask R-CNN could locate most of them, and 

the results can be seen in Fig. 4-9(b). Even though these large soil particles had similar outlines to 

fragment or pellet MPs, they did not cause any trouble in MPs localization by Mask R-CNN. It 

should be noted that two white MP particles on the left top corner could not be located. In Fig. 4-

9(c), the localization results for MP particles on the water surface showed that Mask R-CNN could 

locate most of the particles except one white fiber particle. Based on the evaluation metrics in 

Table 4-4, the localization performance of the Mask R-CNN was slightly impaired compared with 

the excellent performance in Case 1. More specifically, the APbb dropped from 82.6% to 67.50%. 

Besides, both the APbb
50 and APbb

75 decreased from 99.30% to 84.30%. It was worth mentioning that 

though the metrics were impaired, most MP particles could still be located precisely.  

For the classification performance, all MP particles located successfully were classified 

correctly, as shown in Fig. 4-9(a)-(c). Nevertheless, based on the classification metrics calculated 

from 180 images in the test-complex dataset, the classification accuracy somehow deteriorated. 

The precision, recall, and F1 scores were 78.70%, 80.90%, and 79.78%, respectively, which were 
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about 15% lower than those in Case 1. As for the segmentation results, most of the MP particles 

were covered with masks in high accuracy. However, some edges or ends of the MP particles were 

not fully segmented. Furthermore, in Fig. 4-9(a), the masks looked slightly wider for those thin 

rods and fibers. Since the sand background had blurred MPs' boundaries, the Mask R-CNN 

algorithm had difficulty completing the pixel-level segmentation along the edge. Therefore, the 

segmentation metrics shown in Table 4-4 were lower than those in Case 1. Similarly, when the 

segmentation criterion increased from IoU=50% to IoU=75%, the average segmentation precision 

decreased sharply from 84.30% (APm 
50) to 63.70% (APm 

75). Compared with those in Case 1, the APm 

values in Case 2 dropped to 59.50%. The more detailed segmentation performance can be found 

in Fig. 4-9. More specifically, fragments still had the highest segmentation precision, which was 

related to the relatively regular outline of the fragments. Nevertheless, the segmentation 

performance of fibers was still the lowest, which could be attributed to the thin and irregular shapes. 

Furthermore, the segmentation precisions of pellets and rods were only about 60%.  

The performance of the U-Net in Case 2 was much worse than that in Case 1. Moreover, Mask 

R-CNN demonstrated a dominant advantage over the U-Net in Case 2, not even necessary to refer 

to Table 4-4 for detailed metrics. In Fig. 9(a)-(c), only limited MP particles were classified 

correctly, with most background areas like sand, natural soil, and water mistakenly classified and 

segmented into MP particles. The misclassification of background accounted for the low metrics 

in Table 4-4, where the precision, recall, and F1 scores were merely 30.60%, 48.50%, and 37.50%, 

respectively. In addition, the segmentation of these classified particles was not accurate enough 

and many segmentations were much larger than the actual sizes. Thus, the segmentation metric 

MIoU was only 10.80%. In Fig. 4-10, the segmentation accuracy of fiber and fragment particles 

were less than 10%. In comparison, the accuracy for the pellet and rod were slightly over 20%. 

For the abovementioned observations, the U-Net algorithm might need some modification before 

it can be applied in real-world tasks of MP characterization.  
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Fig. 4-10 Detailed segmentation performance per microplastic category of Case 2 

4.5 Discussion 

4.5.1 Error Analysis 

By locating, classifying, and segmenting MPs against various backgrounds, the proposed Mask 

R-CNN algorithm has demonstrated an overall high accuracy performance in both cases. Unlike 

the apparent performance decay of the U-Net, the Mask R-CNN has shown its outstanding 

capability to deal with complicated real-world scenarios. Furthermore, MP images taken by 

microscopes could be processed by Mask R-CNN and U-Net, since the microscopic photos usually 

have a transparent background. The performance would be close to Case 1. However, Mask R-

CNN might be more appealing since it could provide extra information on MPs numbers via 

various colors.  

However, some localization, classification, or segmentation errors appeared in the current study, 

which was likely due to (1) the generalization ability of the dataset and (2) bad image quality. 

These factors will be analyzed in more detail in the following paragraphs.  

(1) Generalization Ability of Dataset: As mentioned in the dataset preparation and 

preprocessing section, the current dataset has been prepared in white and natural backgrounds (soil, 

sand, and water). Lorenzo-Navarro et al. (2020) mentioned that it would be tough to get enough 
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training images if MPs and the annotation process require plenty of time to finish, even for 

experienced researchers. It is easy to obtain the boundary annotation on a white background since 

the high contrast between MPs and the white background will help highlight the particle boundary. 

Nevertheless, the annotation process of MPs on natural background requires about fourfold more 

time than on white background. At the end of the dataset preparation stage, 70% of the dataset are 

MPs on white background. The dataset preparation method adopted in this research could speed 

up the annotation process and the model training time effectively. However, the generalization 

ability of the dataset seems to be limited compared with full complex background training images. 

Nevertheless, the Mask R-CNN outputs demonstrate that the performance deterioration is not 

evident due to the robust feature extraction ability of the algorithm. For the U-Net, it would be 

necessary to include more images with complex backgrounds to boost the classification and 

segmentation performance. 

Furthermore, no overlapped or clustered MPs are included in the current dataset. However, 

there is a high chance that MPs overlap or are clustered in real-world scenarios. The outlines of 

these MPs would be different from individual particles. More complex images with overlapping 

or touching MP particles should be added to the existing microplastic dataset to solve this issue. 

In addition, during the annotation stage of the dataset preparation, the outline of MPs in an 

overlapping or clustered microplastic image should be marked along the boundary clearly, and no 

particles should be ignored.  

(2) Bad Image Quality: image quality involves two main issues. The first one is about the focus. 

When the target is not focused well or out of focus, the object's border cannot be captured precisely. 

Thus, the image will be blurred. As mentioned in the methodology section, the CNN algorithm 

extracts the shape features of objects from the given image. If such a blurry image is fed into the 

algorithm, it will be challenging to determine the exact location using one bounding box. The 

unclear boundaries of the object will also reduce the accuracy of classification and segmentation. 

In Fig. 4-9(b), the white pellet on the top of the image has a blurred outline, making it unable to 

be appropriately located. The transparent water made objects on the bottom, and the water surface 

seemed on the same plane.  

The second issue is focal length. By adjusting the focal length, the same target occupies a 

different portion of the image, as demonstrated in Fig. 4-11. When the MP particle is shot at a 

short focal length (20 mm), the image gives a broader view. However, each MP particle occupies 
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relatively fewer pixels (563×287 pixels). Thus, only limited shape information can be used. In 

contrast, if a long focal length (140 mm) is used, the MP particles will become more prominent 

and occupy more pixels (1558×658 pixels) in the image. A detailed shape contour can be easily 

obtained. However, the maximum and minimum object detection pixels will be fixed for a well-

trained Mask R-CNN algorithm (He et al., 2017). In Fig. 4-7(h), the largest pellet particle was not 

fully covered by the mask, which could be attributed to the particle size beyond the algorithm limit. 

Thus, a proper focal length should be carefully selected. In addition, the minimum and maximum 

pixel size settings within the Mask R-CNN should be adjusted based on engineering practice. It is 

also recommended to keep the MP particles occupying a proper portion of the image.  

 

 
Fig. 4-11 The same MP particle image shot under different focal lengths 

4.5.2 Implications for Practice 

Currently, most of the MPs identification (chemical composition) and classification 

(morphology and color) have to be finished in a laboratory (Cowger et al., 2020). It is difficult and 

time-consuming to deploy large-scale in-situ MPs investigation. Even though large plastic chunks 

can be recognized from satellite images, detecting microplastics and nanoplastics with satellite 

images could be challenging (Corbari et al., 2020). The proposed algorithm provides a potential 

solution for a quick field investigation along the coastal area. Due to the development of 

commercial drones, these drones can obtain 4K resolution images or videos for research purposes, 

which offers highly detailed MPs images with GPS coordinates. Besides, these drones can survey 

a 3-5 km coastal line within half an hour, indicating a multi-round MPs survey can be finished 
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within a day. Once the images and videos are transmitted to our laptop nearby, the quantification 

analysis of the MPs can be finished automatically. Compared with human inspection or satellite 

images, the site survey using a drone is more affordable and time-efficient. Furthermore, the 

algorithm could be deployed on local workstations or cloud computing platforms. The accessibility 

of the algorithm could make it a potential popular solution for analyzing MPs with images.  

4.6 Conclusions 

In the current study, a deep learning based approach, Mask R-CNN, was modified and 

implemented to achieve the automated localization, classification, and segmentation of large 

marine microplastic particles based on their morphologies. The performance of the Mask R-CNN 

has been compared with that of the U-Net to achieve a comprehensive evaluation. The following 

conclusions could be obtained from the current study: 

(1)The Mask R-CNN algorithm can be trained and validated with a dataset that includes both 

MPs on white and real-world backgrounds, simplifying the dataset preparation and annotation 

process. After the training, the algorithm can be implemented on white and complex backgrounds 

(sand, natural soil, and water). The evaluation metrics show a competitive result compared to 

similar MPs characterization applications with the U-Net algorithm.  

(2)When characterizing MPs against the white background, the Mask R-CNN and U-Net could 

achieve high accuracy in describing MPs particles. The Mask R-CNN could provide more 

outstanding outputs than U-Net results by segmenting each MP particle. More specifically, the 

Mask R-CNN can achieve APbb=91.36%, APm = 79.90%, Precision=92.40%, Recall=94.40% and 

F1 score=93.39%, while the U-Net has Precision=90.50%, Recall=96.10% and F1 score=93.20%. 
(3)When characterizing MPs against complex backgrounds, the Mask R-CNN can still maintain 

high accuracy, while the U-Net performance deteriorates significantly. The Mask R-CNN shows 

better adaptability since the APbb and APm dropped to 67.50% and 59.50%, respectively. 

Furthermore, the Precision, Recall, and F1 score of the Mask R-CNN are 78.70%, 80.90%, and F1 

score=79.78%. In comparison, the U-Net can only maintain a Precision of 30.60, a Recall of 48.50, 

and an F1 score of 37.50%.  

(4)The Mask R-CNN has demonstrated a satisfying performance in current scenarios and 

showed its potential for large-scale onsite MPs survey. However, only four types of MPs are 

characterized in this study, and it could be imagined that there will be more types of MPs and more 
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challenges in real-world MPs characterization. Therefore, it is necessary to enlarge the current 

dataset and improve the algorithm's performance. 
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CHAPTER 5 Desiccation crack characterization in clay using deep learning 

based video instance segmentation method and computer vision 

5.1 Introduction 

The generation and propagation of the desiccation crack network within clayey soil is a complex 

phenomenon controlled by the coupling of soil hydraulic and mechanical characteristics.       The 

propagation of the desiccation crack network could deteriorate the engineering performance of 

clayey soil, and change the hydraulic properties of soils. Therefore, it is crucial to characterize the 

patterns of desiccation cracks in a clayey soil as they have practical solid implications in 

geotechnical and geoenvironmental engineering ( Taboada et al., 2008; Lakshmikantha et al., 

2009). 

Traditionally, the inspection and acquisition of soil desiccation crack patterns require in-situ 

manual measurements (Dasog & Shashidhara, 1993), which take a lot of effort and resources to 

complete. Also, labor-dependent work lacks automation. Therefore, researchers have sought more 

intelligent and automated ways to characterize soil cracks. With the rapid developments in 

computer vision and image processing techniques, many image process techniques (IPTs) have 

been utilized for crack detection and segmentation in concrete structures, steel structures, and 

asphalt surfaces (Spencer et al., 2019). To achieve a higher accuracy of crack segmentation, Otsu’s 

method has been applied in threshold selection to transfer an RGB image into a binary image (Otsu, 

1979; Lu et al., 2016). Yamaguchi and Hashimoto (2010) proposed a percolation-based image 

processing technique to accelerate the crack detection speed in large-resolution images. 

With the development of computer science and information technology, an innovative network 

was developed by imitating human neuron function, which was named the artificial neural network 

(ANN). Inspired by the human visual cortex, a convolutional neural network (CNN) was designed 

for feature extraction based on ANN (Fukushima & Miyake, 1982; LeCun et al., 1989). He et al. 

(2017) proposed the mask region conventional neural network (Mask R-CNN) based on Faster R-

CNN (Ren et al., 2017) by attaching a binary mask to the detected object, which could help 

highlight each target from the background with masks in varying colors. Due to its outstanding 

performance in instance segmentation, the three-fold-function Mask R-CNN soon got the attention 

of the civil engineering community. So far, Mask R-CNN has been applied for automated crack 

characterization in various scenarios, such as concrete crack detection (Xu et al., 2021), road crack 
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characterization (Singh & Shekhar, 2018), tunneling crack, and water leakage detection (Zhao et 

al., 2020), defects detection (concrete crack and spalling) in structure health monitoring (Kim & 

Cho, 2019), and cable-stayed bridge inspection (Hou et al., 2020). However, few studies have 

reported video instance segmentation of desiccation cracks in clay. 

This study adopted a deep learning approach based on the state-of-the-art Mask R-CNN 

algorithm for clayey soil desiccation crack characterization. A soil crack dataset consisting of 

multi-source crack images was prepared and annotated for the Mask R-CNN training, validation, 

and testing. Therefore, the algorithm was able to recognize both minor and major cracks. The end-

to-end algorithm has integrated detection, locating, and instance segmentation function together, 

which could give the abovementioned three results from videos. Besides, the algorithm can record 

the number of cracks and the crack-to-soil ratio. 
 

5.2 Materials and Methods 

5.2.1 Soil parameters 

To ensure the repeatability of the experiment, commercial bentonite was obtained, and a series 

of soil classification tests were finished. The results of the physical and mechanical properties are 

listed in Table 5-1. The soil was oven dried thoroughly before mixing with water and reaching a 

water content of 120%.  

Table 5-1 The physical and mechanical properties of the bentonite 

Soil parameters Value 
Soil classification (ASTM D2487) MH 

Liquid limit (LL) 95.4% 
Plastic limit (PL) 58.2% 

Plasticity index (PI) 37.2 
Specific gravity (Gs) 2.464 

Water content in soil moisture(%) 120% 
 

5.2.2 Video capture device 

Once the soil mixture was stirred into a uniform paste, it was poured into a transparent petri 

dish. The petri dish was carefully transferred to a mini photo studio with LED lights, which can be 

seen in Fig. 5-1. Due to the desiccation process usually taking more than 40 hours, mass storage 
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will be required for the video write-in. An interval image shooting method was obtained using a 

Nikon D7000 digital camera. The camera will automatically take images of the petri dish every 2 

minutes, and later these images can be compressed into a video for further instance segmentation.  
 

 
 

Fig. 5-1 Video recording and Struction from Motion setup 

5.2.3 Mask R-CNN architecture 

Mask R-CNN adopts a two-stage framework to accomplish the detection, locating, and 

segmentation with sufficient accuracy. Crack images are fed into the backbone network (Resnet-

50) and unique feature maps are produced at the first stage. Based on a feature map, a region 

proposal network (RPN) could generate a series of pre-designed bounding boxes that possibly 

contain targets (i.e., cracks in this study). These bounding boxes are also known as regions of 

interest (RoI). Taking Fig. 5-2 as an example, it could be found that more proposed bounding 

boxes are shown on the right side since the crack appears on the right side of the image. Then, the 

RoIAlign properly aligns the proposed bounding boxes on the feature map with a more accurate 

location, which results in a higher detection precision (He et al., 2017). At the second stage, the 

fully connected (FC) layers passed the fixed feature map to a normalized exponential function 

(SoftMax) and a bounding box regression layer parallelly, giving the classification and object 

detection results, respectively. Parallelly, a full convolution network (FCN) is utilized to generate 

a binary mask, which could segment the detected objects from the background. 
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Fig. 5-2 Mask R-CNN algorithm structure diagram 

5.2.4 Dataset preparation 

The clayey soil crack images were obtained from Google Images, Instagram, and laboratory-

captured images to prepare the whole dataset. Therefore, a diversity of the dataset could be assured 

and high generalization ability of the proposed algorithm could be achieved. After all raw images 

were downloaded or captured, these images were cut into a series of small patches with a uniform 

resolution of 256×256 pixels through a Python program (Han et al, 2022). This way, a balance 

between keeping image details and lowering computational demands can be sustained. In total, 

1200 crack images were selected and shuffled randomly to eliminate the bias from the same image. 

Within these selected crack images, images originated from Google Images, Instagram and 

laboratory accounted for 60%, 20%, and 20%, respectively.  

In the current study, the images were annotated using the VGG Image Annotator (Dutta & 

Zisserman, 2019). All cracks in the images were carefully annotated along their boundaries using 

the polygon region shapes. All annotation information, including file name, category name, 

coordinates of the polygon, etc., were saved into a json file and ready for the training process. Then 

the total dataset was further divided into the training set, validation set and test set, as shown in 

Table 5-2. 
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5.2.5 Model training and validation 

The online platform Google Colaboratory (Colab) was used for the Mask R-CNN model 

training and fine-tuning. The platform offers a Tesla P100 GPU (16 GB graphic memory) for 

online model training.  

Table 5-2 Image details in the soil crack dataset 

Dataset name Amount Resolution 

Calibration set (90%) Training set (80%) 864 256×256 
Validation set (20%) 216 256×256 

Test set (10%) 120 256×256 
Total 1200 256×256 

 

To balance the calculation efficiency and hardware capacity, the batch size of the training 

dataset was set as 8 and the synchronous stochastic gradient descent (SGD) was used to train the 

model with the weight decay and momentum set as 0.0001 and 0.9, respectively. A stage-wise 

training strategy was adopted here to help the model converge earlier and avoid gradient explosion 

in the early training phase. To begin with, the head part of the whole network composed of the 

bounding box generator and mask generator was trained for 10 epochs at an initial learning rate of 

0.001. Then, for the next 40 epochs, the learning rate was reduced by 10 times and the first three 

stages of the Resnet-50 were activated to continue the training process. After that, the learning rate 

was decreased by 10 times again and all five stages of the Resnet-50 were activated to train another 

100 epochs. Finally, the learning rate was decreased by another 10 times until the last 50 epochs 

were finished. The total training process took less than 6 hours to complete. The loss curves during 

the training and validation process in the current study are shown in Fig. 5-3. 

 

 
Fig. 5-3 Curves of the loss function during model training and validation process 
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5.2.6 Structuure from Motion (SfM) 

Structure from Motion (SfM for short) takes pictures of the subject from multiple angles, reads 

the camera parameters (focal length, principal point and aberration parameters) using 3D 

reconstruction software, and completes the rotation and translation of the feature from the camera 

coordinate system to the world coordinate system according to the position of the same feature in 

different photos, and finally realizes the modeling process from 2D pictures to 3D models (Jiang 

Tengjiao et al. 2016). The SfM modeling process used in this study is shown in Fig. 5-4, which 

mainly includes (1) multi-view image acquisition; (2) key point acquisition; (3) sparse point cloud 

reconstruction; (4) point cloud encryption; (5) point cloud meshing; (6) texture generation; and (7) 

3D model generation. 

 
Fig. 5-4 Workflow of soil desiccation crack reconstruction via Structure from Motion (SfM) 

The container containing the soil sample was placed in the center of the turntable in the studio 

(the turntable was labeled with a QR code for positioning and dimensional calibration, which can 

be seen in Fig. 5-5). The container was kept in a fixed position relative to the turntable during the 

shooting process. The turntable was slowly rotated about 15° before each shot to ensure sufficient 

overlap between the two shots. After completing one round of photography, the camera position 

was adjusted and the second round of images was shot. It is worth mentioning that the minimum 

image amount is not fixed for each specific project. However, an experienced photographer can 

create an accurate model with fewer images. 
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Fig. 5-5 Sample image from the SfM raw data 

The soil sample will lose water and gradually consolidate during the desiccation process. In this 

experiment, images shot of the petri dish containing the soil sample were finished every 3 hours. 

The 3D reconstruction was processed later (T1=0h, T2=3h, T3=6h and T4=9h). During the modeling 

process, a scale calibration was performed according to the 2D QR code coordinates of the 

turntable. The software can interpret the coordinate of each QR code. Thus the model will have an 

accurate scale.  

In comparison, an amateur would need more images to build a whole model of the target. In 

this soil desiccation crack project, the author tried reconstructing the soil model from 15 to 70 

images. Around 50 images were taken for each soil model to balance the accuracy and computer 

processing. It took less than one hour to finish all SfM workflow. The calculated camera positions 

and 3D model of the soil desiccation crack can be seen in Fig. 5-6. 
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Fig. 5-6 The 3D reconstruction of the soil desiccation model and camera positions 

5.3 Results and discussions 

5.3.1 Soil crack characterization via images 

Before the Mask R-CNN is applied to video instance segmentation, the algorithm is executed 

on the test dataset. The inference results of the instance segmentation and crack characterization 

are shown in Fig. 5-7. The raw images containing various crack patterns are shown in Fig. 5-7(a)-

(d), and the crack characterization results are exhibited in Fig. 5-7(e)-(h). The green bounding box 

reveals the crack locations within the image. The crack number, crack pixel area, and crack 

ratio(total crack area in pixels / total soil area in pixels) are shown on the left corner of each 

detected crack. For example, three soil cracks are detected, located, and segmented in Fig. 5-7(f). 

The most significant crack in Fig. 5-7(f) is crack No.2, with a crack area of 894 pixels, which 

accounts for 1.36% of the total soil area in the image. The test dataset has proved the accuracy and 

efficiency of the Mask R-CNN algorithm. 
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Fig. 5-7 Instance segmentation results of the desiccation crack in clay:(a)-(d) raw images from 

the test dataset;(e)-(h)characterization results from the Maks R-CNN algorithm 

5.3.2 Soil crack characterization via videos 

5.3.2.1 Instance segmentation results: 

During the whole desiccation process of the clay, about 1500 images are captured through the 

camera. These images are transferred into a 49 seconds video with a resolution of 3840×2160 

pixels. The video has a frame ratio of 30 FPS (frame per second). The video will later be fed into 

the Mask R-CNN algorithm to implement the instance segmentation and crack characterization 

tasks.  

In order to demonstrate the results from the abovementioned tasks, four sample frames are 

extracted from the video and displayed in Fig. 5-8. Fig. 5-8(a)-(d) shows the raw images of the 

desiccation crack. With the speckle pattern, it is not easy to spot the thin cracks at the initial stage 

of the desiccation process. Besides, the crack pattern and number are more complex and less 

significant than the cracks shown in Fig. 5-7. However, the algorithm could successfully detect, 

locate and segment these cracks, as shown in Fig. 5-8(e)-(h), which proves an excellent 

generalization capability of the model. These cracks have been highlighted with different colors. 

Thus, the shapes can be observed with less effort. 
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Fig. 5-8 Instance segmentation results of the desiccation crack in clay 

5.3.2.2 Crack characterization results: 

During the clay desiccation process, the crack network develops from a single thin crack into a 

crack backbone structure that covers the top, bottom, left, and right sides of the petri dish. After 

that, more minor cracks begin to expand along the branches. Finally, these cracks develop into a 

crack network. There are 3, 7, 13, and 27 cracks detected in Fig. 5-9(a)-(d). The pixel area and the 

crack ratio of each crack are also listed in the image.  

After the algorithm processes the entire video, the crack number and crack ratio of each frame 

are calculated automatically by the algorithm. The results are demonstrated in Fig. 5-10. It can be 

seen from Fig. 5-10 that the first crack is generated around 1870 minutes after the experiment 

starts. When the experiment lasts 2100 minutes, the crack number reaches the first plateau (15 

cracks). However, the crack ratio keeps increasing from 5% to 6.5% until it reaches its plateau at 

2190 minutes. The delay of the crack ratio indicates that once 15 cracks are generated, these cracks 

keep growing longer or thicker to cover more area of the clay. The same pattern can be seen from 

2700 minutes when the crack number peaks at 27. Nevertheless, the crack ratio increased slowly 

from around 8.2% to 8.5%. 
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Fig. 5-9 Video instance segmentation results in desiccation cracks in clay 
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Fig. 5-10 Characterization results of desiccation cracks in clay via video instance 

segmentation 

5.3.3 Soil crack characterization via Structure from Motion (SfM): 

5.3.3.1 3D reconstruction of the soil desiccation crack  

The densified point cloud file obtained from the Pix4D mapper was later imported into Matlab 

for further processing. The point cloud file contained all point coordinates in space (xyz) and all 

color information in RGB. The soil desiccation point cloud graphs were listed in Fig. 5-11.  

 
(a) Point cloud at T1 time 
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(b) Point cloud at T2 time 

 
(c) Point cloud at T3 time 
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(d) Point cloud at T4 time 

Fig. 5-11 Point cloud of the desiccation crack at different times  

Several hollow parts shown in the point cloud, such as Fig. 5-11(b) and (c), which were 

attributed to the transparent petri dish. The petri dish has been painted with a white and black 

pattern to provide more details for the reconstruction process. But during the mesh generation 

process, these hollow parts will be aumomatically filled and covered with texture.   

5.3.3.2 Soil crack profile 

After obtaining the point cloud map at the moments T1-T4, Matlab is used to extract the 

specified cross-section and obtain the crack profile at the corresponding moment, as shown in Fig. 

5-12(a)-(d). At the moment of T1=0h, the height of the soil in the center of the disc is 1.17 cm, and 

the surface of the soil is relatively flat. at the moment of T2=3h, the surface of the soil shows the 

form of a high center and depression around, the height of the high center point is 1.15 cm, and 

the height of the lowest depression on the left side is 0.96cm. at the moment of T3=6h, the central 

area of the surface of the soil is relatively flat and becomes platform-like, and the surrounding area 

is still in the form of depression. The average height of the central platform is about 0.95cm, and 

the height of the lowest point of the left depression is 0.78 cm. At the moment of T4=9h, the surface 

of the soil is higher than the central area near the edge of the container due to the drying and 

shrinking of the soil body. The left side of the soil body is detached from the inner wall of the 
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container by about 0.4 cm, and the right side of the soil body is still attached to the inner wall of 

the container. The profile shape and depth of the two cracks can be observed from Fig. 5-12(d). 

 
(a) Cross-section profile at T1  

 
(b) Cross-section profile at T2  
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(c) Cross-section profile at T3  

 
 

 
(d) Cross-section profile at T4  

 
Fig. 5-12 Cross-section profile of the soil desiccation cracks at different times 

5.3.3.3 Volume change during desiccation 

To verify the accuracy of SfM 3D reconstruction, the height (1.17 cm) and diameter (8.66 cm) 

of the soil specimen were measured by calipers at the beginning of the experiment (T1), and the 

initial volume of the soil was calculated to be 68.91 cm3, while the initial volume calculated by 
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SfM was 68.29 cm3(demonstrated in Fig. 5-13), with an error of only 0.89%, which fully proved 

the accuracy of SfM 3D reconstruction for small-sized samples. The accuracy of SfM for 3D 

reconstruction of small-sized samples is well demonstrated. At the time of T4=9h, the volume of 

the soil after cracking calculated by SfM becomes 40.67 cm3, which is 40.4% smaller than the 

volume at the time of T1. 

 
Fig. 5-13 Volume calculation results from Pix4D mapper 

5.3.3.4 Soil crack digitizing 

A three-dimensional point cloud model with actual colors can be obtained using SfM to 

reconstruct the soil crack. However, it is challenging to visualize part of the internal area because 

the soil around the crack blocks the light from each other.  

In order to visualize the 3D features inside the crack, it is necessary to detect the crack area 

within the point cloud. In this study, the angle between each triangular mesh and the bottom 

(horizontal plane) of the container is calculated to determine whether this triangular mesh is in the 

crack area. If the angle is larger than the pre-set threshold (25 degrees), the three nodes (point 

cloud) within the mesh element will be colored red. The automatic crack identification and 

coloring of the crack region is completed by a Matlab algorithm. And the processing time is less 

than 1 minute. In Fig. 5-14, the soil crack points in the point cloud graph have been marked red to 

highlight their position.  



160 

 

To study the three-dimensional characteristics of the crack, the point cloud data of the crack 

region (blue box in Fig. 5-14) is extracted and enlarged. The three-dimensional crack elevation 

map is drawn according to its elevation data in Fig. 5-15(b). From Fig. 5-15(b), it can be seen that 

the depth at the edge of the crack (position A') is about 0.8 cm, while the depth at the inner side of 

the crack (position A) is only 0.6 cm. The lowest part of the crack is about 0.1 cm away from the 

bottom of the vessel. 

 
Fig. 5-14 3D crack detection in point cloud via Matlab 

  
 (a) original point cloud  (b) colored 3D elevation graph  

Fig. 5-15 Detailed soil crack point cloud  
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5.4 Conclusion 

The current study introduced a state-of-the-art deep-learning algorithm Mask R-CNN for clayey 

soil desiccation crack characterization via video instance segmentation. The Mask R-CNN could 

automatically detect, locate and segment soil desiccation cracks with sufficient accuracy and 

efficiency. The following conclusions could be obtained:  

(1) A mixing dataset containing images from multi-sources can be used for Mask R-CNN 

algorithm training and validation. The trained model can be applied for desiccation crack 

characterization in clay. The model has proved the generalization capacity of the algorithm.  

(2) The algorithm can be applied to the instance segmentation of images and videoes. Essential 

information like crack location and shape can be displayed. Besides, crack number, crack area in 

pixels, and crack ratio can be collected and recorded for further analysis.  

(3) The SfM could be applied to reconstruct the soil desiccation cracks model accurately. The 

soil crack can be detected in a 3D point cloud graph and highlighted with red. A series of 3D 

parameters like depth, volume, and cross-section profile can be obtained for future analysis. 
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CHAPTER 6 Conclusions  

This dissertation proposed innovative materials (Ground-granulated blast-furnace slag (GGBS) 

and Biochar ) and new monitoring technique (Struction from Motion (SfM) and Deep learning 

algorithms) for the applications in geotechnical engineering and coastal environment engineering. 

Here are the summaries of major findings throughout this dissertation and suggestions for further 

research. 

6.1 GGBS and biochar application in geotechnical engineering 

In this study, the mechanical, physicochemical, durability, and microstructural characteristics 

of the biochar-amended AAS stabilized coral sand was investigated. The following conclusions 

can be drawn from this study: 

(1) The addition of moderate amounts of biochar was beneficial for strength and stiffness 

development in the long term. On the other hand, a high biochar content reduced soil strength 

and stiffness, particularly for those cured for a short period. Moreover, adding biochar in AAS-

stabilized coral sand in general could improve its ductility, in an early age and/or with a high 

biochar dosage.  

(2) Biochar amendment improved the water holding capacity of the stabilized sand. For samples 

cured for 3, 7, and 14 days, there was a slight increase (0.3% to 1.3%) in moisture content for 

samples with a high biochar dosage. For longer curing periods (28~90 days), the moisture 

content increased more notably with increasing biochar content. Samples with the highest 

biochar content (0.366%) exhibited 22-36% higher moisture content than those without 

biochar. 

(3) The addition of biochar had a marginal effect on the strength development of AAS-stabilized 

sand under sulfate attack, especially at a high biochar content. However, the resistance to wet-

dry cycles slightly deteriorated with the biochar amendment. 

(4) The observed engineering and durability performance of biochar-amended AAS stabilized 

coral sand was associated with three-fold functions of biochar in the soil matrix, namely 

internal curing agent, micro-reinforcer, and mechanically weak point. 

 



165 

 

6.2 Deep leanring algorithm for clayey soil desiccation cracks characterization 

The current study introduced a state-of-the-art deep-learning algorithm Mask R-CNN for clayey 

soil desiccation crack characterization. The Mask R-CNN could automatically detect, locate and 

segment soil desiccation cracks with sufficient accuracy and efficiency. The following conclusions 

could be obtained: 

(1) The Mask R-CNN algorithm was trained, validated, and tested on a soil crack dataset 

containing 1200 images. The precision, recall and F1 score were 73.29%, 82.76% and 77.74%, 

respectively. The algorithm had a mean locating accuracy (APbb) of 64.14% and a mean 

segmentation accuracy (APm) of 47.59%.  Moreover, the algorithm was implemented and achieved 

an overall detection speed of 2.2 FPS. 

(2) In general, the algorithm could satisfactorily detect, locate, and segment soil desiccation 

cracks on solid color soil background, impure background and with a complex crack network. In 

terms of detection accuracy, the F1 score in the cases of solid color background, impure 

background and complex crack network were around 90%, 88% and 82%, respectively. The 

locating accuracy in the cases of solid color background, impure background and complex crack 

network were around 70%, 50% and 30%, respectively. And the accuracy metrics in segmentation 

were about 60%, 25% and 13% in the cases of solid color background, impure background and 

complex crack network, respectively.  

(3) The Mask R-CNN demonstrated better performance over the U-Net in soil crack detection, 

locating and instance segmentation, especially in face of complex crack networks. When the soil 

background color was solid, the U-Net achieved a similar accuracy in crack segmentation 

performance. However, when the background became impure with more distractions, the accuracy 

of U-Net decreased from 90% to about 70%. The U-Net got only about 40% segmentation accuracy 

when applied on a complex soil crack network.  

 

6.3 Deep learning algorithm for large marine microplastics characterization 

In the current study, a deep learning based approach, Mask R-CNN, was modified and 

implemented to achieve the automated localization, classification, and segmentation of large 

marine microplastic particles based on their morphologies. The performance of the Mask R-CNN 



166 

 

has been compared with that of the U-Net to achieve a comprehensive evaluation. The following 

conclusions could be obtained from the current study: 

(4) The Mask R-CNN algorithm can be trained and validated with a dataset that includes both 

MPs on white and real-world backgrounds, simplifying the dataset preparation and annotation 

process. After the training, the algorithm can be implemented on white and complex backgrounds 

(sand, natural soil, and water). The evaluation metrics show a competitive result compared to 

similar MPs characterization applications with the U-Net algorithm.  

(5) When characterizing MPs against the white background, the Mask R-CNN and U-Net 

could accurately describe MPs particles. The Mask R-CNN could provide more outstanding 

outputs than U-Net results by segmenting each MP particle. More specifically, the Mask R-CNN 

can achieve APbb=91.36%, APm = 79.90%, Precision=92.40%, Recall=94.40% and F1 

score=93.39%, while the U-Net has Precision=90.50%, Recall=96.10% and F1 score=93.20%. 

(6) When characterizing MPs against complex backgrounds, the Mask R-CNN can still 

maintain high accuracy, while the U-Net performance deteriorates significantly. The Mask R-CNN 

shows better adaptability since the APbb and APm dropped to 67.50% and 59.50%, respectively. 

Furthermore, the Precision, Recall, and F1 score of the Mask R-CNN are 78.70%, 80.90%, and F1 

score=79.78%. In comparison, the U-Net can only maintain a Precision of 30.60, a Recall of 48.50, 

and an F1 score of 37.50%.  

(7) The Mask R-CNN has demonstrated a satisfying performance in current scenarios and 

showed its potential for large-scale onsite MPs survey. However, only four types of MPs are 

characterized in this study, and it could be imagined that there will be more types of MPs and more 

challenges in real-world MPs characterization. Therefore, it is necessary to enlarge the current 

dataset and improve the algorithm's performance. 

 

6.4 Deep learning and computer vision method for soil desiccation study 

In the current study, a state-of-the-art deep-learning algorithm Mask R-CNN was introduced 

for clayey soil desiccation crack characterization via video instance segmentation. The Mask R-

CNN could automatically detect, locate and segment soil desiccation cracks with sufficient 

accuracy and efficiency. Moreover, SfM method was utilized to obtain the 3D reconstruction 

model of the soil crack. The following conclusions could be obtained:  
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(8) A mixing dataset containing images from multi-sources can be used for Mask R-CNN 

algorithm training and validation. The trained model can be applied for desiccation crack 

characterization in clay. The model has proved the generalization capacity of the algorithm.  

(9) The algorithm can be applied to the instance segmentation of images and videoes. Essential 

information like crack location and shape can be displayed. Besides, crack number, crack area in 

pixels, and crack ratio can be collected and recorded for further analysis.  

(10) The SfM could be applied to reconstruct the soil desiccation cracks model with high 

precision. The soil crack can be detected in 3D point cloud graph and highlighted with red color. 

A series of 3D parameters like depth, volume, and cross-section profile can be obtained for future 

analysis. 

 

6.5 Recommendations for future work 

(1) Though the prototype algorithm for crack monitoring is proposed in this study, it is still far 

from a product or software that can be utilized directly by engineers in the field. An alert system 

based on ordinary optical cameras and optical fibers can achieve real-time damage monitoring. 

The algorithm will be trained to locate, classify, and segment damaged areas in a real-time manner. 

By setting cameras along the bridges, tunnels, and potential landslide areas, the image or video 

stream could be analyzed by the proposed method. Furthermore, common road damages such as 

potholes, longitudinal cracks, transverse cracks, and upheavals could be automatically recorded 

via vehicle-based or drone-based cameras. The precisely recorded damage type, size, and location 

could boost infrastructure maintenance efficiency. 

(2) The high accuracy and easy-to-use have made SfM a popular survey method for geoscience 

engineers. Based on the special geographical location of Hawaiian islands, drone-based coastal 

environmental surveys (marine microplastics), coastal erosion, and even post-hurricane damage 

evaluation can be utilized. Once such disasters happen, the flooded roads will be hard to access. 

However, drones equipped with a high-resolution camera and hyperspectral camera can cover a 

large area of a disaster-affected zone. The images from optical cameras could be utilized to 

generate 3D topography map that can benefit the rescue teams like FEMA. Also, the topography 

maps can guide post-disaster reconstruction. The deep learning algorithm could analyze the 

damage type such as flooding area, collapsed building, damaged embankment, etc. The 
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hyperspectral images could provide information about the polluted area and pollutant types. These 

could send alerts to rescue teams in advance and to residents who plan to come back after disasters. 

Furthermore, with the construction and maintenance of the Honolulu Authority for Rapid 

Transportation (HART), drones can be used to inspect the support column and SfM could generate 

a column model for analysis.  
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