15,305 research outputs found

    Trends and concerns in digital cartography

    Get PDF
    CISRG discussion paper ;

    Automating the Surveillance of Mosquito Vectors from Trapped Specimens Using Computer Vision Techniques

    Full text link
    Among all animals, mosquitoes are responsible for the most deaths worldwide. Interestingly, not all types of mosquitoes spread diseases, but rather, a select few alone are competent enough to do so. In the case of any disease outbreak, an important first step is surveillance of vectors (i.e., those mosquitoes capable of spreading diseases). To do this today, public health workers lay several mosquito traps in the area of interest. Hundreds of mosquitoes will get trapped. Naturally, among these hundreds, taxonomists have to identify only the vectors to gauge their density. This process today is manual, requires complex expertise/ training, and is based on visual inspection of each trapped specimen under a microscope. It is long, stressful and self-limiting. This paper presents an innovative solution to this problem. Our technique assumes the presence of an embedded camera (similar to those in smart-phones) that can take pictures of trapped mosquitoes. Our techniques proposed here will then process these images to automatically classify the genus and species type. Our CNN model based on Inception-ResNet V2 and Transfer Learning yielded an overall accuracy of 80% in classifying mosquitoes when trained on 25,867 images of 250 trapped mosquito vector specimens captured via many smart-phone cameras. In particular, the accuracy of our model in classifying Aedes aegypti and Anopheles stephensi mosquitoes (both of which are deadly vectors) is amongst the highest. We present important lessons learned and practical impact of our techniques towards the end of the paper

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    Using machine learning techniques to automate sky survey catalog generation

    Get PDF
    We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomar Observatory Sky Survey provides comprehensive photographic coverage of the northern celestial hemisphere. The photographic plates are being digitized into images containing on the order of 10(exp 7) galaxies and 10(exp 8) stars. Since the size of this data set precludes manual analysis and classification of objects, our approach is to develop a software system which integrates independently developed techniques for image processing and data classification. Image processing routines are applied to identify and measure features of sky objects. Selected features are used to determine the classification of each object. GID3* and O-BTree, two inductive learning techniques, are used to automatically learn classification decision trees from examples. We describe the techniques used, the details of our specific application, and the initial encouraging results which indicate that our approach is well-suited to the problem. The benefits of the approach are increased data reduction throughput, consistency of classification, and the automated derivation of classification rules that will form an objective, examinable basis for classifying sky objects. Furthermore, astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems given automatically cataloged data

    The Design and Operation of The Keck Observatory Archive

    Get PDF
    The Infrared Processing and Analysis Center (IPAC) and the W. M. Keck Observatory (WMKO) operate an archive for the Keck Observatory. At the end of 2013, KOA completed the ingestion of data from all eight active observatory instruments. KOA will continue to ingest all newly obtained observations, at an anticipated volume of 4 TB per year. The data are transmitted electronically from WMKO to IPAC for storage and curation. Access to data is governed by a data use policy, and approximately two-thirds of the data in the archive are public.Comment: 12 pages, 4 figs, 4 tables. Presented at Software and Cyberinfrastructure for Astronomy III, SPIE Astronomical Telescopes + Instrumentation 2014. June 2014, Montreal, Canad

    From XML to XML: The why and how of making the biodiversity literature accessible to researchers

    Get PDF
    We present the ABLE document collection, which consists of a set of annotated volumes of the Bulletin of the British Museum (Natural History). These follow our work on automating the markup of scanned copies of the biodiversity literature, for the purpose of supporting working taxonomists. We consider an enhanced TEI XML markup language, which is used as an intermediate stage in translating from the initial XML obtained from Optical Character Recognition to the target taXMLit. The intermediate representation allows additional information from external sources such as a taxonomic thesaurus to be incorporated before the final translation into taXMLit
    corecore