9,553 research outputs found

    HotGrid: Graduated Access to Grid-based Science Gateways

    Get PDF
    We describe the idea of a Science Gateway, an application-specific task wrapped as a web service, and some examples of these that are being implemented on the US TeraGrid cyberinfrastructure. We also describe HotGrid, a means of providing simple, immediate access to the Grid through one of these gateways, which we hope will broaden the use of the Grid, drawing in a wide community of users. The secondary purpose of HotGrid is to acclimate a science community to the concepts of certificate use. Our system provides these weakly authenticated users with immediate power to use the Grid resources for science, but without the dangerous power of running arbitrary code. We describe the implementation of these Science Gateways with the Clarens secure web server

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    A blockchain-based trust management system for 5G network slicing enabled C-RAN

    Get PDF
    The mobility nature of the wireless networks and the time-sensitive tasks make it necessary for the system to transfer the messages with a minimum delay. Cloud Radio Access Network (C-RAN) reduces the latency problem. However, due to the trustlessness of 5G networks resulting from the heterogeneity nature of devices. In this article, for the edge devices, there is a need to maintain a trust level in the C-RAN node by checking the rates of devices that are allowed to share data among other devices. The SDN controller is built into a macro-cell that plays the role of a cluster head. The blockchain-based automatically authenticates the edge devices by assigning a unique identification that is shared by the cluster head with all C-RAN nodes connected to it. Simulation results demonstrate that, compared with the benchmark, the proposed approach significantly improves the processing time of blocks, the detection accuracy of malicious nodes, and transaction transmission delay

    ConXsense - Automated Context Classification for Context-Aware Access Control

    Full text link
    We present ConXsense, the first framework for context-aware access control on mobile devices based on context classification. Previous context-aware access control systems often require users to laboriously specify detailed policies or they rely on pre-defined policies not adequately reflecting the true preferences of users. We present the design and implementation of a context-aware framework that uses a probabilistic approach to overcome these deficiencies. The framework utilizes context sensing and machine learning to automatically classify contexts according to their security and privacy-related properties. We apply the framework to two important smartphone-related use cases: protection against device misuse using a dynamic device lock and protection against sensory malware. We ground our analysis on a sociological survey examining the perceptions and concerns of users related to contextual smartphone security and analyze the effectiveness of our approach with real-world context data. We also demonstrate the integration of our framework with the FlaskDroid architecture for fine-grained access control enforcement on the Android platform.Comment: Recipient of the Best Paper Awar
    corecore