21,036 research outputs found

    Automatic Accuracy Prediction for AMR Parsing

    Full text link
    Abstract Meaning Representation (AMR) represents sentences as directed, acyclic and rooted graphs, aiming at capturing their meaning in a machine readable format. AMR parsing converts natural language sentences into such graphs. However, evaluating a parser on new data by means of comparison to manually created AMR graphs is very costly. Also, we would like to be able to detect parses of questionable quality, or preferring results of alternative systems by selecting the ones for which we can assess good quality. We propose AMR accuracy prediction as the task of predicting several metrics of correctness for an automatically generated AMR parse - in absence of the corresponding gold parse. We develop a neural end-to-end multi-output regression model and perform three case studies: firstly, we evaluate the model's capacity of predicting AMR parse accuracies and test whether it can reliably assign high scores to gold parses. Secondly, we perform parse selection based on predicted parse accuracies of candidate parses from alternative systems, with the aim of improving overall results. Finally, we predict system ranks for submissions from two AMR shared tasks on the basis of their predicted parse accuracy averages. All experiments are carried out across two different domains and show that our method is effective.Comment: accepted at *SEM 201

    Learning a Recurrent Visual Representation for Image Caption Generation

    Full text link
    In this paper we explore the bi-directional mapping between images and their sentence-based descriptions. We propose learning this mapping using a recurrent neural network. Unlike previous approaches that map both sentences and images to a common embedding, we enable the generation of novel sentences given an image. Using the same model, we can also reconstruct the visual features associated with an image given its visual description. We use a novel recurrent visual memory that automatically learns to remember long-term visual concepts to aid in both sentence generation and visual feature reconstruction. We evaluate our approach on several tasks. These include sentence generation, sentence retrieval and image retrieval. State-of-the-art results are shown for the task of generating novel image descriptions. When compared to human generated captions, our automatically generated captions are preferred by humans over 19.8%19.8\% of the time. Results are better than or comparable to state-of-the-art results on the image and sentence retrieval tasks for methods using similar visual features

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    On the Evaluation of Semantic Phenomena in Neural Machine Translation Using Natural Language Inference

    Full text link
    We propose a process for investigating the extent to which sentence representations arising from neural machine translation (NMT) systems encode distinct semantic phenomena. We use these representations as features to train a natural language inference (NLI) classifier based on datasets recast from existing semantic annotations. In applying this process to a representative NMT system, we find its encoder appears most suited to supporting inferences at the syntax-semantics interface, as compared to anaphora resolution requiring world-knowledge. We conclude with a discussion on the merits and potential deficiencies of the existing process, and how it may be improved and extended as a broader framework for evaluating semantic coverage.Comment: To be presented at NAACL 2018 - 11 page

    LIG-CRIStAL System for the WMT17 Automatic Post-Editing Task

    Get PDF
    This paper presents the LIG-CRIStAL submission to the shared Automatic Post- Editing task of WMT 2017. We propose two neural post-editing models: a monosource model with a task-specific attention mechanism, which performs particularly well in a low-resource scenario; and a chained architecture which makes use of the source sentence to provide extra context. This latter architecture manages to slightly improve our results when more training data is available. We present and discuss our results on two datasets (en-de and de-en) that are made available for the task.Comment: keywords: neural post-edition, attention model
    • …
    corecore