14,894 research outputs found

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    The Co-Evolution of Test Maintenance and Code Maintenance through the lens of Fine-Grained Semantic Changes

    Full text link
    Automatic testing is a widely adopted technique for improving software quality. Software developers add, remove and update test methods and test classes as part of the software development process as well as during the evolution phase, following the initial release. In this work we conduct a large scale study of 61 popular open source projects and report the relationships we have established between test maintenance, production code maintenance, and semantic changes (e.g, statement added, method removed, etc.). performed in developers' commits. We build predictive models, and show that the number of tests in a software project can be well predicted by employing code maintenance profiles (i.e., how many commits were performed in each of the maintenance activities: corrective, perfective, adaptive). Our findings also reveal that more often than not, developers perform code fixes without performing complementary test maintenance in the same commit (e.g., update an existing test or add a new one). When developers do perform test maintenance, it is likely to be affected by the semantic changes they perform as part of their commit. Our work is based on studying 61 popular open source projects, comprised of over 240,000 commits consisting of over 16,000,000 semantic change type instances, performed by over 4,000 software engineers.Comment: postprint, ICSME 201

    Cell degradation detection based on an inter-cell approach

    Get PDF
    Fault management is a crucial part of cellular network management systems. The status of the base stations is usually monitored by well-defined key performance indicators (KPIs). The approaches for cell degradation detection are based on either intra-cell or inter-cell analysis of the KPIs. In intra-cell analysis, KPI profiles are built based on their local history data whereas in inter-cell analysis, KPIs of one cell are compared with the corresponding KPIs of the other cells. In this work, we argue in favor of the inter-cell approach and apply a degradation detection method that is able to detect a sleeping cell that could be difficult to observe using traditional intra-cell methods. We demonstrate its use for detecting emulated degradations among performance data recorded from a live LTE network. The method can be integrated in current systems because it can operate using existing KPIs without any major modification to the network infrastructure

    Is It Safe to Uplift This Patch? An Empirical Study on Mozilla Firefox

    Full text link
    In rapid release development processes, patches that fix critical issues, or implement high-value features are often promoted directly from the development channel to a stabilization channel, potentially skipping one or more stabilization channels. This practice is called patch uplift. Patch uplift is risky, because patches that are rushed through the stabilization phase can end up introducing regressions in the code. This paper examines patch uplift operations at Mozilla, with the aim to identify the characteristics of uplifted patches that introduce regressions. Through statistical and manual analyses, we quantitatively and qualitatively investigate the reasons behind patch uplift decisions and the characteristics of uplifted patches that introduced regressions. Additionally, we interviewed three Mozilla release managers to understand organizational factors that affect patch uplift decisions and outcomes. Results show that most patches are uplifted because of a wrong functionality or a crash. Uplifted patches that lead to faults tend to have larger patch size, and most of the faults are due to semantic or memory errors in the patches. Also, release managers are more inclined to accept patch uplift requests that concern certain specific components, and-or that are submitted by certain specific developers.Comment: In proceedings of the 33rd International Conference on Software Maintenance and Evolution (ICSME 2017
    • …
    corecore