60,609 research outputs found

    Hierarchically Structured Reinforcement Learning for Topically Coherent Visual Story Generation

    Full text link
    We propose a hierarchically structured reinforcement learning approach to address the challenges of planning for generating coherent multi-sentence stories for the visual storytelling task. Within our framework, the task of generating a story given a sequence of images is divided across a two-level hierarchical decoder. The high-level decoder constructs a plan by generating a semantic concept (i.e., topic) for each image in sequence. The low-level decoder generates a sentence for each image using a semantic compositional network, which effectively grounds the sentence generation conditioned on the topic. The two decoders are jointly trained end-to-end using reinforcement learning. We evaluate our model on the visual storytelling (VIST) dataset. Empirical results from both automatic and human evaluations demonstrate that the proposed hierarchically structured reinforced training achieves significantly better performance compared to a strong flat deep reinforcement learning baseline.Comment: Accepted to AAAI 201

    How to Describe Images in a More Funny Way? Towards a Modular Approach to Cross-Modal Sarcasm Generation

    Full text link
    Sarcasm generation has been investigated in previous studies by considering it as a text-to-text generation problem, i.e., generating a sarcastic sentence for an input sentence. In this paper, we study a new problem of cross-modal sarcasm generation (CMSG), i.e., generating a sarcastic description for a given image. CMSG is challenging as models need to satisfy the characteristics of sarcasm, as well as the correlation between different modalities. In addition, there should be some inconsistency between the two modalities, which requires imagination. Moreover, high-quality training data is insufficient. To address these problems, we take a step toward generating sarcastic descriptions from images without paired training data and propose an Extraction-Generation-Ranking based Modular method (EGRM) for cross-model sarcasm generation. Specifically, EGRM first extracts diverse information from an image at different levels and uses the obtained image tags, sentimental descriptive caption, and commonsense-based consequence to generate candidate sarcastic texts. Then, a comprehensive ranking algorithm, which considers image-text relation, sarcasticness, and grammaticality, is proposed to select a final text from the candidate texts. Human evaluation at five criteria on a total of 1200 generated image-text pairs from eight systems and auxiliary automatic evaluation show the superiority of our method

    Improving Radiology Summarization with Radiograph and Anatomy Prompts

    Full text link
    The impression is crucial for the referring physicians to grasp key information since it is concluded from the findings and reasoning of radiologists. To alleviate the workload of radiologists and reduce repetitive human labor in impression writing, many researchers have focused on automatic impression generation. However, recent works on this task mainly summarize the corresponding findings and pay less attention to the radiology images. In clinical, radiographs can provide more detailed valuable observations to enhance radiologists' impression writing, especially for complicated cases. Besides, each sentence in findings usually focuses on single anatomy, so they only need to be matched to corresponding anatomical regions instead of the whole image, which is beneficial for textual and visual features alignment. Therefore, we propose a novel anatomy-enhanced multimodal model to promote impression generation. In detail, we first construct a set of rules to extract anatomies and put these prompts into each sentence to highlight anatomy characteristics. Then, two separate encoders are applied to extract features from the radiograph and findings. Afterward, we utilize a contrastive learning module to align these two representations at the overall level and use a co-attention to fuse them at the sentence level with the help of anatomy-enhanced sentence representation. Finally, the decoder takes the fused information as the input to generate impressions. The experimental results on two benchmark datasets confirm the effectiveness of the proposed method, which achieves state-of-the-art results.Comment: 11 pages, ACL2023 Finding

    Learning a Recurrent Visual Representation for Image Caption Generation

    Full text link
    In this paper we explore the bi-directional mapping between images and their sentence-based descriptions. We propose learning this mapping using a recurrent neural network. Unlike previous approaches that map both sentences and images to a common embedding, we enable the generation of novel sentences given an image. Using the same model, we can also reconstruct the visual features associated with an image given its visual description. We use a novel recurrent visual memory that automatically learns to remember long-term visual concepts to aid in both sentence generation and visual feature reconstruction. We evaluate our approach on several tasks. These include sentence generation, sentence retrieval and image retrieval. State-of-the-art results are shown for the task of generating novel image descriptions. When compared to human generated captions, our automatically generated captions are preferred by humans over 19.8%19.8\% of the time. Results are better than or comparable to state-of-the-art results on the image and sentence retrieval tasks for methods using similar visual features
    • …
    corecore