153 research outputs found

    Respiratory organ motion in interventional MRI : tracking, guiding and modeling

    Get PDF
    Respiratory organ motion is one of the major challenges in interventional MRI, particularly in interventions with therapeutic ultrasound in the abdominal region. High-intensity focused ultrasound found an application in interventional MRI for noninvasive treatments of different abnormalities. In order to guide surgical and treatment interventions, organ motion imaging and modeling is commonly required before a treatment start. Accurate tracking of organ motion during various interventional MRI procedures is prerequisite for a successful outcome and safe therapy. In this thesis, an attempt has been made to develop approaches using focused ultrasound which could be used in future clinically for the treatment of abdominal organs, such as the liver and the kidney. Two distinct methods have been presented with its ex vivo and in vivo treatment results. In the first method, an MR-based pencil-beam navigator has been used to track organ motion and provide the motion information for acoustic focal point steering, while in the second approach a hybrid imaging using both ultrasound and magnetic resonance imaging was combined for advanced guiding capabilities. Organ motion modeling and four-dimensional imaging of organ motion is increasingly required before the surgical interventions. However, due to the current safety limitations and hardware restrictions, the MR acquisition of a time-resolved sequence of volumetric images is not possible with high temporal and spatial resolution. A novel multislice acquisition scheme that is based on a two-dimensional navigator, instead of a commonly used pencil-beam navigator, was devised to acquire the data slices and the corresponding navigator simultaneously using a CAIPIRINHA parallel imaging method. The acquisition duration for four-dimensional dataset sampling is reduced compared to the existing approaches, while the image contrast and quality are improved as well. Tracking respiratory organ motion is required in interventional procedures and during MR imaging of moving organs. An MR-based navigator is commonly used, however, it is usually associated with image artifacts, such as signal voids. Spectrally selective navigators can come in handy in cases where the imaging organ is surrounding with an adipose tissue, because it can provide an indirect measure of organ motion. A novel spectrally selective navigator based on a crossed-pair navigator has been developed. Experiments show the advantages of the application of this novel navigator for the volumetric imaging of the liver in vivo, where this navigator was used to gate the gradient-recalled echo sequence

    4D MRI: Robust sorting of free breathing MRI slices for use in interventional settings

    Full text link
    Purpose: We aim to develop a robust 4D MRI method for large FOVs enabling the extraction of irregular respiratory motion that is readily usable with all MRI machines and thus applicable to support a wide range of interventional settings. Method: We propose a 4D MRI reconstruction method to capture an arbitrary number of breathing states. It uses template updates in navigator slices and search regions for fast and robust vessel cross-section tracking. It captures FOVs of 255 mm x 320 mm x 228 mm at a spatial resolution of 1.82 mm x 1.82 mm x 4mm and temporal resolution of 200ms. A total of 37 4D MRIs of 13 healthy subjects were reconstructed to validate the method. A quantitative evaluation of the reconstruction rate and speed of both the new and baseline method was performed. Additionally, a study with ten radiologists was conducted to assess the subjective reconstruction quality of both methods. Results: Our results indicate improved mean reconstruction rates compared to the baseline method (79.4\% vs. 45.5\%) and improved mean reconstruction times (24s vs. 73s) per subject. Interventional radiologists perceive the reconstruction quality of our method as higher compared to the baseline (262.5 points vs. 217.5 points, p=0.02). Conclusions: Template updates are an effective and efficient way to increase 4D MRI reconstruction rates and to achieve better reconstruction quality. Search regions reduce reconstruction time. These improvements increase the applicability of 4D MRI as a base for seamless support of interventional image guidance in percutaneous interventions.Comment: 16 pages, 11 figure

    Surrogate-driven respiratory motion models for MRI-guided lung radiotherapy treatments

    Get PDF
    An MR-Linac integrates an MR scanner with a radiotherapy delivery system, providing non-ionizing real-time imaging of the internal anatomy before, during and after radiotherapy treatments. Due to spatio-temporal limitations of MR imaging, only high-resolution 2D cine-MR images can be acquired in real-time during MRI-guided radiotherapy (MRIgRT) to monitor the respiratory-induced motion of lung tumours and organs-at-risk. However, temporally-resolved 3D anatomical information is essential for accurate MR guidance of beam delivery and dose estimation of the actually delivered dose. Surrogate-driven respiratory motion models can estimate the 3D motion of the internal anatomy from surrogate signals, producing the required information. The overall aim of this thesis was to tailor a generalized respiratory motion modelling framework for lung MRIgRT. This framework can fit the model directly to unsorted 2D MR images sampling the 3D motion, and to surrogate signals extracted from the 2D cine-MR images acquired on an MR-Linac. It can model breath-to-breath variability and produce a motion compensated super-resolution reconstruction (MCSR) 3D image that can be deformed using the estimated motion. In this work novel MRI-derived surrogate signals were generated from 2D cine-MR images to model respiratory motion for lung cancer patients, by applying principal component analysis to the control point displacements obtained from the registration of the cine-MR images. An MR multi-slice interleaved acquisition potentially suitable for the MR-Linac was developed to generate MRI-derived surrogate signals and build accurate respiratory motion models with the generalized framework for lung cancer patients. The developed models and the MCSR images were thoroughly evaluated for lung cancer patients scanned on an MR-Linac. The results showed that respiratory motion models built with the generalized framework and minimal training data generally produced median errors within the MCSR voxel size of 2 mm, throughout the whole 3D thoracic field-of-view and over the expected lung MRIgRT treatment times

    Developments in PET-MRI for Radiotherapy Planning Applications

    Get PDF
    The hybridization of magnetic resonance imaging (MRI) and positron emission tomography (PET) provides the benefit of soft-tissue contrast and specific molecular information in a simultaneous acquisition. The applications of PET-MRI in radiotherapy are only starting to be realised. However, quantitative accuracy of PET relies on accurate attenuation correction (AC) of, not only the patient anatomy but also MRI hardware and current methods, which are prone to artefacts caused by dense materials. Quantitative accuracy of PET also relies on full characterization of patient motion during the scan. The simultaneity of PET-MRI makes it especially suited for motion correction. However, quality assurance (QA) procedures for such corrections are lacking. Therefore, a dynamic phantom that is PET and MR compatible is required. Additionally, respiratory motion characterization is needed for conformal radiotherapy of lung. 4D-CT can provide 3D motion characterization but suffers from poor soft-tissue contrast. In this thesis, I examine these problems, and present solutions in the form of improved MR-hardware AC techniques, a PET/MRI/CT-compatible tumour respiratory motion phantom for QA measurements, and a retrospective 4D-PET-MRI technique to characterise respiratory motion. Chapter 2 presents two techniques to improve upon current AC methods that use a standard helical CT scan for MRI hardware in PET-MRI. One technique uses a dual-energy computed tomography (DECT) scan to construct virtual monoenergetic image volumes and the other uses a tomotherapy linear accelerator to create CT images at megavoltage energies (1.0 MV) of the RF coil. The DECT-based technique reduced artefacts in the images translating to improved μ-maps. The MVCT-based technique provided further improvements in artefact reduction, resulting in artefact free μ-maps. This led to more AC of the breast coil. In chapter 3, I present a PET-MR-CT motion phantom for QA of motion-correction protocols. This phantom is used to evaluate a clinically available real-time dynamic MR images and a respiratory-triggered PET-MRI protocol. The results show the protocol to perform well under motion conditions. Additionally, the phantom provided a good model for performing QA of respiratory-triggered PET-MRI. Chapter 4 presents a 4D-PET/MRI technique, using MR sequences and PET acquisition methods currently available on hybrid PET/MRI systems. This technique is validated using the motion phantom presented in chapter 3 with three motion profiles. I conclude that our 4D-PET-MRI technique provides information to characterise tumour respiratory motion while using a clinically available pulse sequence and PET acquisition method

    Accelerating cardiovascular MRI

    Get PDF

    Characterisation and correction of respiratory-motion artefacts in cardiac PET-CT

    Get PDF
    Respiratory motion during cardiac Positron Emission Tomography (PET) Computed Tomography (CT) imaging results in blurring of the PET data and can induce mismatches between the PET and CT datasets, leading to attenuation-correction artefacts. The aim of this project was to develop a method of motion-correction to overcome both of these problems. The approach implemented was to transform a single CT to match the frames of a gated PET study, to facilitate respiratory-matched attenuation-correction, without the need for a gated CT. This is benecial for lowering the radiation dose to the patient and in reducing PETCT mismatches, which can arise even in gated studies. The heart and diaphragm were identied through phantom studies as the structures responsible for generating attenuation-correction artefacts in the heart and their motions therefore needed to be considered in transforming the CT. Estimating heart motion was straight-forward, due to its high contrast in PET, however the poor diaphragm contrast meant that additional information was required to track its position. Therefore a diaphragm shape model was constructed using segmented diaphragm surfaces, enabling complete diaphragm surfaces to be produced from incomplete and noisy initial estimates. These complete surfaces, in combination with the estimated heart motions were used to transform the CT. The PET frames were then attenuation-corrected with the transformed CT, reconstructed, aligned and summed, to produce motion-free images. It was found that motion-blurring was reduced through alignment, although benets were marginal in the presence of small respiratory motions. Quantitative accuracy was improved from use of the transformed CT for attenuation-correction (compared with no CT transformation), which was attributed to both the heart and the diaphragm transformations. In comparison to a gated CT, a substantial dose saving and a reduced dependence on gating techniques were achieved, indicating the potential value of the technique in routine clinical procedures

    Estimating 3D Deformable Motion from a series of Fast 2D MRI Images

    Get PDF
    In this application, we estimated patient-specific 3D deformable motion in the abdomen from a series of fast 2D images. CLARET (Correction via Limited-Angle Residues in External Beam Therapy) is an image registration method that has been used to estimate 3D deformable motion from 2D X-ray images. This work generalizes CLARET and extends it to use with MRI images of the abdomen. Using CLARET to predict the 3D motion of a subject from a set of 2D projection images has the potential to be used in fast MRI imaging of dynamic processes. The method begins with acquisition of a 4D respiratory-gated image set using a gradient-echo sequence. From the 4D set, a patient-specific motion model was derived, as well as a regression relationship between the 3D anatomy and 2D slice images taken with a specific geometry. The second dataset was a series of fast 2D gradient-echo images of the same subject, which are used via the regression relationship to estimate the 3D body poses at each time point. Before testing on the acquired 2D dataset, CLARET was tested on a simulated dataset which confirmed the method accurately predicted random warps of the dataset. In a free breathing experiment, the CLARET procedure gave motion estimates that reduced alignment error mean and variance in the 2D frames. We conclude that CLARET can be applied in an MRI setting and produces fast instantaneous motion estimates with less registration error than a time-averaged estimate.Master of Scienc

    Applications of the golden angle in cardiovascular MRI

    Get PDF
    The use of radial trajectories has been seen as a potential solution to highly efficient cardiovascular magnetic resonance imaging (MRI). By acquiring a broad range of spatial frequencies per repetition time, the acquisition is time-efficient and robust against motion. Of particular interest is the golden angle profile order, which promises a near-uniform k-space coverage for an arbitrary number of readouts, enabling flexible data resorting, which is critical for efficient cardiovascular MRI. In Study I the use of 2D golden angle profile ordering is explored for imaging pulmonary embolisms. The insensitivity to motion and flow is used to reduce the artifacts that otherwise degrade images of the pulmonary vasculature when imaging with thin slices. It was found that the proposed technique could improve the image quality. Another source of artifacts arises when gradients are rapidly switched, and local induction of eddy currents may perturb spin equilibrium. In Study II, we propose a generalized golden angle profile orderings in 3D which reduces eddy-current artifacts. We demonstrate the efficacy of our generalization through numerical simulations, phantom imaging and imaging of a healthy volunteer. In Study III an improved 2D golden angle profile ordering was explored which resulted in a higher degree of k-space uniformity after physiological binning. This novel profile ordering was used in combination with a phase-contrast readout to enable quantification of myocardial tissue velocity and transmitral blood flow velocity, which are essential parameters for diastolic function assessment. When compared to echocardiography, it was found that MRI could accurately quantify myocardial tissue velocity, whereas transmitral blood flow velocity was underestimated. Study IV explored a further development of Study III by proposing a 3D version of the improved profile ordering. This novel ordering was used to acquire whole-heart functional images during free-breathing in less than one minute. Together, these results indicate that golden-angle-based imaging has the potential to improve cardiovascular MRI in several areas

    Inter- and Intrafraction Motion Management for MR guided Proton Therapy of Pancreatic Carcinoma

    Get PDF
    Hintergrund: Patienten mit Bauchspeicheldrüsenkrebs könnten von der Protonentherapie (PT) profitieren, aufgrund ihres Potentials der Schonung von Risikoorganen. Jedoch führen die inter- und intrafraktionelle Beweglichkeit der Bauchspeicheldrüse zu hohen Unsicherheiten bei der Dosisapplikation und erfordern daher große Sicherheitssäume. Aufgrund des hohen Weichgewebskontrastes in der MRT und der Möglichkeit der Echtzeitbildgebung gewinnt die Unterstützung der Strahlentherapie durch die MRT stetig höheres Interesse. In der Translation von konventioneller Röntgen-geführter XT zur MR-geführten PT müssen Methoden zur Kontrolle der inter- und intrafraktionellen Organbeweglichkeit re-evaluiert, adaptiert oder neu entwickelt werden. Fragestellung/Hypothese: Für die interfraktionelle Bewegungskontrolle wurde die Hypothese aufgestellt, dass der neu entwickelte Flüssigmarker BioXmark®, injiziert in Pankreasgewebe, sichtbar in der MR-Bildgebung ist und verglichen zu üblich verwendeten soliden Markern die Bildartefakte reduziert. Für die intrafraktionelle Bewegungskontrolle wurde erwartet, dass ein Patienten-individuelles MR-kompatibles Korsett die atmungs-induzierte Pankreasbeweglichkeit reduziert, von Patienten mit Tumoren im Oberbauch gut vertragen wird und in die PT implementiert werden kann. Ein 4D MR-Linac Bewegungsphantom wurde für die Evaluierung der Geometrietreue und der Genauigkeit der Bewegungswiedergabe des genutzten diagnostischen 3.0 T MR Scanners verwendet. Es wurde erwartet, dass dieses Phantom für die Verwendung am diagnostischen MR Scanner implementiert werden kann und für die Qualitätssicherung von bewegungscharakterisierenden MR Pulssequenzen genutzt werden kann. Material und Methode: Die MR Eigenschaften von BioXmark® wurden in einer Phantomstudie durch MR Relaxometrie quantitativ analysiert und verglichen mit zwei Arten von soliden Marker. Des weiteren wurde die MR-Sichtbarkeit von BioXmark® das erste mal in ex vivo tumorösem Pankreasgewebe getestet für Markern dreier Größenkategorien (20/25 µL, 50/60 µL, 100 µL), injeziert mit jeweils drei verschiedenen Nadelgrößen (18 G, 22 G, 25 G). Ein 4D MR-Linac Bewegungsphantom wurde für den diagnostischen 3.0 T MR Scanner unserer Klinik kommissioniert und Programme für die automatische Evaluierung der 3D Geometrietreue und Genauigkeit der Bewegungscharakterisierung entwickelt. Drei Korsetts aus verschiedenen Materialien (PU, PE, 3DPE) wurden in Bezug auf die Verwendbarkeit in der PT untersucht. Des weiteren wurde der Effekt der Korsetts auf die Reduzierung der Pankreasbeweglichkeit bei einem gesunden Freiwilligen analysiert, mittels zeitaufgelöster 2D-cine MRT und respirationskorrelierter 4D-MRT in einem 1.5 T MR Scanner. Daraufhin wurde eine klinische Studie durchgeführt, die 13 Patienten mit Tumor im Oberbauch einschloss. Im Rahmen der Studie wurde der Effekt des verwendeten 3DPE Korsetts auf die Reduktion der Pankreasbeweglichkeit analysiert, mittels 2D-cine MRT und 4D-MRT in einem 3.0 T MR Scanner. Abschließend wurde die Patienten-Verträglichkeit bei Anwendung des Korsetts analysiert. Ergebnisse: Für BioXmark® wurde keine Korrelation zwischen der Intensität der Sichtbarkeit und Artefakte gefunden (RS = 0.0) und nur eine schwache Korrelation zwischen der Größe der Sichtbarkeit und Artefakte (RS = 0.4). Im Gegensatz dazu wurde für die soliden Marker eine lineare Abhängigkeit der Größe der Sichtbarkeit und Artefakte (RS = 0.99) und eine nicht-lineare Abhängigkeit zwischen der Intensität der Sichtbarkeit und Artefakte gefunden (RS = 0.964). Nach Injektion in drei ex vivo Pankreas-Resektionspräparate war BioXmark® als Hypointensität in sowohl T1- als auch T2- gewichteten MR Bildgebung sichtbar. Marker aller drei getesteten Größenkategorien waren in klinisch verwendeten MR Sequenzen detektierbar. Jedoch führte eine diffuse Gelierung oder Injektion zu nah am Geweberand zur Minderung der Detektierbarkeit. Dies hatte zur Folge hatte, dass 4 von in Summe 17 Markern in der MR-Bildgebung nicht erkennbar waren. Das MR-Linac Bewegungsphantom wurde erfolgreich am diagnostischen 3.0 T MR Scanner kommissioniert. Eine Fixierungs- und Positionierungshilfe wurde entwickelt und konstruiert, die eine sichere und reproduzierbare Positionierung des Aktuators und des Phantoms (< 0.4mm) ermöglichte. Ein Programm zur automatischen Verzerrungsanalyse wurde entwickelt, basierend auf einer Referenz-CT Aufnahme. Die Auswertung einer klinisch verwendeten 3D GRE Sequenz offenbarte eine maximale Verzerrung von 1.3mm in einem elliptischen Zylindervolumen von 15×23×6 cm³. Das Referenz-CT offenbarte zusätzlich einen Abweichung der eingestellten Targetbeweglichkeit in AP/LR Richtung. Kontrastreiche und geometrisch korrekte 2D-cine MR Bilder des sich bewegenden Phantom-Targets konnten aufgenommen werden. Ein Programm für ein automatisiertes Target-Tracking wurde entwickelt, welches eine hohe Genauigkeit der bewegungscharakterisierenden Sequenzen bestätigte (< 0.2mm in 2D-cine MRT, < 0.3mm in 4D-MRT). Eine vergleichbare Reduzierung der respirationsbedingten Pankreas-Bewegung von 46%–56% (7.7mm – 9.4 mm) wurde für die drei getesteten Korsetts gefunden. Die Materialanalyse führte jedoch zum Ausschluss des PU Korsetts für die Verwendung in der PT, aufgrund der gravierenden Heterogenität des Korsettmaterials. Das 3DPE Korsett wurde als für die PT implementierbar bewertet, wobei eine direkte Integration in der PT Planung mit der klinisch verwendeten Hounsfield-SPR Übersetzungstabelle möglich war. Das 3DPE Korsett wurde für 13 Patienten mit Tumor im Oberbauch in den PT Arbeitsablauf integriert, in welchem das Korsett von den Patienten gut toleriert wurde. Die MR-basierte Analyse der respirationsbedingten Pankreasbewegung in 9 Patienten mit und ohne Korsett ergab eine Reduzierung der Beweglichkeit um 37% (~3.3 mm). Schlussfolgerungen: BioXmark® und das entwickelte 3DPE Korsett wurden als verwendbar für die MR geführte PT bewertet. BioXmark® war in der MR-Bildgebung als Hypointensität sichtbar, unabhängig von der verwendeten MR Pulssequenz, solange die Markergröße die Voxelauflösung überschritt. Die MR-Sichtbarkeit von BioXmark® sollte jedoch in vivo getestet werden, da sich dort die Gelierung unterscheiden könnte und dementsprechend die Sichtbarkeit beeinflussen könnte. Das MR-Linac Bewegungsphantom kann in Zukunft für QA von bewegungscharakterisierenden Pulssequenzen des diagnostischen MR Scanners verwendet werden. Dies ist empfohlen, wann immer neue Pulssequenzen implementiert werden. Das entwickelte Korsett reduziert die respirationsbedingte Pankreas-Beweglichkeit in Patienten mit Tumor im Oberbauch um ~37% und kann in Zukunft für die MR geführte PT verwendet werden. Die Studie offenbarte jedoch auch, dass eine erhebliche Anzahl an Patienten nicht von der Verwendung eines Korsetts profitiert, aufgrund ihrer initial geringen Beweglichkeit bei freier Atmung (< 6 mm). Schlussfolgernd ist eine vorherige Einschätzung der Beweglichkeit jedes individuellen Patienten bei freier Atmung zu empfehlen, bevor eine Entscheidung über die Implementierung des Korsetts in der PT getroffen wird
    corecore