4 research outputs found

    Automatic Segmentation of Subfigure Image Panels for Multimodal Biomedical Document Retrieval

    Get PDF
    Biomedical images are often referenced for clinical decision support (CDS), educational purposes, and research. The task of automatically finding the images in a scientific article that are most useful for the purpose of determining relevance to a clinical situation is traditionally done using text and is quite challenging. We propose to improve this by associating image features from the entire image and from relevant regions of interest with biomedical concepts described in the figure caption or discussion in the article. However, images used in scientific article figures are often composed of multiple panels where each sub-figure (panel) is referenced in the caption using alphanumeric labels, e.g. Figure 1(a), 2(c), etc. It is necessary to separate individual panels from a multi-panel figure as a first step toward automatic annotation of images. In this work we present methods that add make robust our previous efforts reported here. Specifically, we address the limitation in segmenting figures that do not exhibit explicit inter-panel boundaries, e.g. illustrations, graphs, and charts. We present a novel hybrid clustering algorithm based on particle swarm optimization (PSO) with fuzzy logic controller (FLC) to locate related figure components in such images. Results from our evaluation are very promising with 93.64% panel detection accuracy for regular (non-illustration) figure images and 92.1% accuracy for illustration images. A computational complexity analysis also shows that PSO is an optimal approach with relatively low computation time. The accuracy of separating these two type images is 98.11% and is achieved using decision tree

    Graphical Image Classification Combining an Evolutionary Algorithm and Binary Particle Swarm Optimization

    Get PDF
    Biomedical journal articles contain a variety of image types that can be broadly classified into two categories: regular images, and graphical images. Graphical images can be further classified into four classes: diagrams, statistical figures, flow charts, and tables. Automatic figure type identification is an important step toward improved multimodal (text + image) information retrieval and clinical decision support applications. This paper describes a feature-based learning approach to automatically identify these four graphical figure types. We apply Evolutionary Algorithm (EA), Binary Particle Swarm Optimization (BPSO) and a hybrid of EA and BPSO (EABPSO) methods to select an optimal subset of extracted image features that are then classified using a Support Vector Machine (SVM) classifier. Evaluation performed on 1038 figure images extracted from ten BioMedCentral® journals with the features selected by EABPSO yielded classification accuracy as high as 87.5%

    Data fusion by using machine learning and computational intelligence techniques for medical image analysis and classification

    Get PDF
    Data fusion is the process of integrating information from multiple sources to produce specific, comprehensive, unified data about an entity. Data fusion is categorized as low level, feature level and decision level. This research is focused on both investigating and developing feature- and decision-level data fusion for automated image analysis and classification. The common procedure for solving these problems can be described as: 1) process image for region of interest\u27 detection, 2) extract features from the region of interest and 3) create learning model based on the feature data. Image processing techniques were performed using edge detection, a histogram threshold and a color drop algorithm to determine the region of interest. The extracted features were low-level features, including textual, color and symmetrical features. For image analysis and classification, feature- and decision-level data fusion techniques are investigated for model learning using and integrating computational intelligence and machine learning techniques. These techniques include artificial neural networks, evolutionary algorithms, particle swarm optimization, decision tree, clustering algorithms, fuzzy logic inference, and voting algorithms. This work presents both the investigation and development of data fusion techniques for the application areas of dermoscopy skin lesion discrimination, content-based image retrieval, and graphic image type classification --Abstract, page v

    Automatic segmentation of subfigure image panels for multimodal biomedical document retrieval

    No full text
    corecore