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Graphical image classification combining an evolutionary 
algorithm and binary particle swarm optimization  

Beibei Cheng*, Renzhong Wang*, Sameer Antani, R. Joe Stanley*, George R. Thoma 

U.S. National Library of Medicine, National Institutes of Health, Bethesda, Maryland 
*Department of Electrical and Computer Engineering,  

Missouri University of Science and Technology, Rolla, Missouri 

ABSTRACT 
Biomedical journal articles contain a variety of image types that can be broadly classified into two categories: regular 
images, and graphical images. Graphical images can be further classified into four classes: diagrams, statistical figures, 
flow charts, and tables. Automatic figure type identification is an important step toward improved multimodal (text + 
image) information retrieval and clinical decision support applications. This paper describes a feature-based learning 
approach to automatically identify these four graphical figure types. We apply Evolutionary Algorithm (EA), Binary 
Particle Swarm Optimization (BPSO) and a hybrid of EA and BPSO (EABPSO) methods to select an optimal subset of 
extracted image features that are then classified using a Support Vector Machine (SVM) classifier. Evaluation performed 
on 1038 figure images extracted from ten BioMedCentral® journals with the features selected by EABPSO yielded 
classification accuracy as high as 87.5%. 

Keywords:  image processing, feature selection, Binary Particle Swarm Optimization (BPSO), Evolutionary Algorithm 
(EA), Support Vector Machine (SVM), graphical image 

1.  INTRODUCTION 
A variety of biomedical images needed for instructional purposes or in support of clinical decisions are often found in 
biomedical articles, but are not easily accessible to retrieval tools. Broadly, the images found as figures in the articles 
can be classified into two categories: regular and graphical images, respectively. Regular images are those that are 
acquired through an imaging device and include MRI, CT, X-ray, photographs, etc. Graphical images (henceforth, 
graphics) are those that are created by authors to illustrate biomedical processes or content or biomedical data analyses. 
These images can be further classified into four classes: diagrams, statistical figures, flow-charts, and tables. Although 
tables are often represented in XHTML form in online articles today, older issues still provide them as images. It is 
necessary to annotate these images to support multimodal (image + text) medical information retrieval and clinical 
decision support systems. Graphical figure type identification is a key step toward such automatic annotation for figures 
extracted from scientific publications. The task of separating regular images from graphics is also a goal of the project 
and has been reported earlier [1]. 

Graphics used in medical articles often appear in a variety of formats such as tables, graphs, flow charts, and diagrams as 
illustrated in Figure 1. For this paper, we use 1038 graphical images selected from ten BioMedCentral journals (Cancer, 
Cardio, Urology, Gastroenterology, Musculoskeletal Disorders, Nephrology, Ophthalmology, Pulmonary Medicine, 
Surgery and Dermatology) available in the Open Access dataset from the PubMedCentral® repository of the National 
Library of Medicine, part of the U.S. National Institutes of Health. The objective of this project is to develop a feature-
based learning approach to identify the four graphics types, viz., table, graph, flow chart, and diagram. 

This article describes our feature-based learning approach applying Evolutionary Algorithm (EA), Binary Particle 
Swarm Optimization (BPSO) and a hybrid of EA and BPSO (EABPSO) methods to an optimal subset of extracted image 
features which are then classified using a Support Vector Machine (SVM) [2] classifier. The proposed approach can 
address complex, hybrid, and composite graphics, which existing approaches [3, 4, 5] fail to identify satisfactorily. For 
example, the widely used Hough transform [3] can identify chart types such as pie charts and bar charts by detecting arc 
and line components inside the image based on the fact that arcs only appear in pie charts while vertical lines with 
similar length often exist in bar charts. 

We also address other graphics types such as tables and flow charts with more complicated compositions. For example, 
the X-axis in a graph does not have to be present (Figure 1(a)); a flow chart can contain curved lines (Figure.1(b)); some 
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E. Hole object features: This set of features is generated from the hole objects inside an image, as illustrated in Figure 
4(d). The hole objects are obtained by applying the hole filling algorithm [17]. Five hole object features are generated for 
the sample image in this paper. They are shown in Table 1 rows 74 to 79. 

3.2 Classifier 
SVM classifier is chosen since it delivers a deterministic solution. The key features of SVMs are the use of kernels, the 
absence of local minima, the sparseness of solution, and the capacity control achieved by optimizing the margin.  

Table 1. Extracted Features 
Feature set Label Measure Description 
Textural 
features 

 

1 Mean of histogram The first moment of gray image 
2 Variance of histogram The second moment of gray image 
3 Skewness of histogram The third moment of gray image 
4 Flatness of histogram The fourth moment of gray image 
5 Maximum of histogram Uniformity of gray image 
6 Entropy of histogram Average entropy of gray image 
7~10 Contrast The intensity contrast of correlation matrices 
11~14 Correlation The correlation of correlation matrices 
15~19 Uniformity The uniformity of correlation matrices 
20~23 Closeness The homogeneity of correlation matrices 
24~27 Strongest response The maximum probability of correlation matrices 
28~30 Randomness The average entropy of correlation matrices 

Shape features 

 

31 MajorAxisLength Length (in pixels) of the major axis of the ellipse that has the same normalized 
second central moments as the region. 

32 MinorAxislength Length (in pixels) of the minor axis of the ellipse that has the same normalized 
second central moments as the region . 

33 Axis ratio Ratio of MajorAxisLength to MinorAxislength. 
34 Normalized area Area of the region divided by the whole image.   
35 Solidity Area of the region divided by the convex hull area. 
36 EulerNumber The number of objects in the region minus the number of holes in those 

objects. 
37 EquiDiam The diameter of a circle with the same area as the region. 
38 Extent Ratio of area to bounding box area 
39 Horizontal MinPixelNo The minimum number of intersection area for the object and its bounding box 

horizontally.  
40 Vertical MinPixelNo The minimum number of intersection area for the object and its bounding box 

vertically. 
WDD features 41~64 WDD  Correlation of binary chart frame and WDD function. 
Hough 
features 

65 Line number Number of straight lines 
66 Longest line length Longest line’s length 
67 Longest line slope Longest line’s slope 
68 2nd Longest line length Second longest line’s length 
69 2nd Longest line slope Second longest line’s slope 
70 Line slope Average value of lines’ slope 
71 Line length Average value of lines’ length 
72 Variance of line slope Variance of lines’ slope 
73 Variance of line length Variance of lines’ length 

Hole object 
features 

 

74 Hole number Number of hole objects 
75 Largest hole area Area of largest hole object 
76 Hole area Average hole objects’ area, 
77 Area variance Variance of hole objects’ area, 
78 Area ratio Average ratio of hole object’s area to its bounding box’s area 
79 Area ratio variance Variance of ratio of hole object’s area to its bounding box’s area.  
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4. OPTIMAL FEATURE SELECTION 
 
After the 79 features listed in Table 1 are extracted from the images, Evolutionary Algorithm (EA), Binary Particle 
Swarm Optimization (BPSO) and a combined Evolutionary Algorithm and Binary Particle Swarm Optimization 
(EABPSO) are then applied to obtain the optimal feature subset. They all use the same scheme for candidate (feature 
subset) representation, where each individual in a population is an N-dimensional binary vector with each element of the 
vector representing a feature and N being the total number of features. For each element of the binary vector, ‘1’ means 
that the corresponding feature is selected. The initial population is randomly initialized in the sense that each element in 
a vector is randomly picked as 0 or 1. The fitness values for EA, BPSO and EABPSO are set to the accuracy of the SVM 
classifier applied to the selected feature set. The algorithms for generating the candidate feature subsets in EA, BPSO 
and EABPSO are described below. 

4.1 Evolutionary Algorithm (EA) 
The offspring of the Evolutionary Algorithm are generated as follows:  1) randomly select two parents from the parent 
pool of M initial candidates; 2) generate two offspring by applying a uniform [20] crossover operator; 3) offspring are 
then altered by performing a mutation operation. A random parameter ranging from 0 to 1 is generated for each bit of the 
candidate vector, which will flip once the parameter is greater than a predefined threshold.   The next parent pool is 
selected based on whether the parents or their offspring maximize the classification accuracy.  The same process is used 
for obtaining the next generation of offspring and this process is repeated for N epochs. From the final parent pool, the 
parent which maximizes the classification accuracy is selected as the final result. Since EA evaluates many points 
simultaneously in the search space it is more likely to find the global solution but at the cost of higher computation time.  

4.2 Binary Particle Swarm Optimization (BPSO) 
In implementing BPSO, the velocity and position of a candidate are computed using Eq.1 and Eq. 2 respectively. A 
sigmoid transformation of the velocity component is applied to keep the velocity values constrained in the range (0, 1). 
However, the BPSO algorithm can be easily trapped into a local minimum and may lead to premature convergence. It 
has been observed that when BPSO reaches a local optimal solution, all particles tend to gather around it making it 
difficult to find a global optimum.  V t 1 wV t c rand Pbest X t c rand Gbest X t                                               (1)          X t 1 1    if rand V0                                      else                                                                                                                                      2                          

where t is the iteration index (time step), m is the current particle (1 m  M) in a population of M, n is the 
attribute element (1 n ),  is the particle’s current velocity,  is the particle’s new 
velocity,  is the particle’s current position, and  is the particle’s new position,  is 
the global best position,  is the previous best position,  and  are the random value from 0 to 1, 
w is the learning weight, selected from 0 to 1. 

4.3 EABPSO 
To address the individual shortcomings of these two algorithms, we design EABPSO combining the feature evolution 
idea of EA and BPSO into a hybrid solution appropriate for discrete (binary) problems. EABPSO is an improvement 
over prior hybrid evolutionary algorithms [21, 22] that solved continuous problems.  
 

 
Figure 4. Overview of EABPSO procedure. 

 
Figure 4 shows an overview of the EABPSO procedure. As can be seen, EA and BPSO both work with the same initial 
population. To solve an M-dimensional problem, 2M individuals are randomly generated in the sense that each element 

EA 

BPSO

Offspring New parents 

New particles Worst half population 

Fitness 
Ranking 

M Best half population 

M 
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in an individual is randomly picked from 0 or 1. These individuals may be considered analogous to chromosomes in the 
case of EA, or as particles in the case of BPSO. The 2M individuals are sorted by fitness, and the top M individuals are 
fed into EA to create M new offspring by crossover and mutation operations, as described in section 4.1. The new 
offspring are used as the input to BPSO to compute M new particles as described in section 4.2. The new parent and new 
particles are combined and sorted in preparation for repeating the entire run. 

5. EXPERIMENTAL SETUP AND RESULTS 
 
The experimental data set consists of 1038 medical images annotated by type including 306 diagrams, 329 graphs, 154 
tables, and 249 flow charts, which are selected from the ten BioMedCentral journals mentioned in Section 1. 79 features 
are extracted from these images and optimal features selection step is applied. In the BPSO algorithm, the inertia weight 
w is empirically set to 0.8, the cognitive acceleration constant c , 1, and the social acceleration constant c , 1. In EA, the 
uniform crossover operator evaluates each bit in the parent strings for exchange with a probability of 0.5. The predefined 
mutation threshold is set as 0.8. EABPSO shares the same parameters with BPSO and EA. In addition, the dimension 
size (N) is the same as the number of features.  For training the SVM, Platt's sequential minimal optimization algorithm 
[23] was implemented. It globally replaces all missing values and transforms nominal attributes into binary ones. It also 
normalizes all attributes and uses the polynomial kernel by default. A three-fold cross validation is used to set up the 
training and testing data sets. The data set is divided into three parts where 2/3rd is used for training and the rest is used 
for testing. This procedure is repeated three times. Therefore, for each time, the training set is 692 and the representative 
test set is 346 images. The accuracy of the classifier presented in the next section is based on averaging the accuracy of 
the three test sets.    

Seven different schemes for feature subset selections are used. They are as follows: (i) Case 1: EA feature selection with 
uniform crossover operator; (ii) Case 2: BPSO feature selection; (iii) Case 3: EABPSO; (iv) Case 4: voting algorithm 
based on the selected feature set. The voting algorithm selects features based on the frequency of their occurrence in the 
three feature selection algorithms; (v) Case 5: Chi-square statistic [24]; (vi) Case 6: information gain [25] also used in 
order to compare classifier performance against EA, BPSO, EABPSO; and, finally, (vii) Case 7: uses all features as the 
input. 

 
Figure 5. Root Mean Squared Error (RMSE) versus iteration number for each of the feature selection schemes. 

 
In Figure 5, the root mean square error (RMSE) performance measures (1-Accuracy) for cases 1, 2 and 3 are shown as 
the training progresses for one run. The population size (M) is 30 and the total training epoch (T) is 100.  Table 2 shows 
the final accuracy of the SVM for feature subset from case 1 to case 7. We choose the particle size (M) to be 20 and 30, 
the total training epoch (T) to be 50, 100 and 150.  Within the different combinations of the particle size (M) and the 
total training epoch (T), for case 1 to case 3, the best and averaged accuracy for the ten runs are listed in Table 2. The 
number of features in the subset is listed after the best accuracy. The accuracy of cases 4, 5 and 6 is also listed in Table 2 
based on the feature combination that gives the best accuracy for case 1, 2 and 3. 

As can be seen in Figure 5, for one hundred epochs, the accuracy ranking from high to low is 1) EABPSO, 2) EA, and 3) 
BPSO. BPSO stops converging at epoch 31; EA keeps converging until epoch 94; EABPSO achieves the global 
minimum at epoch 48. Figure 5 shows that BPSO algorithm gets trapped at the local minimum although it has a very fast 
convergence speed. EA does a good job to reach the lowest RMSE value but it takes a long time.  Since EABPSO 
combines the evolutionary ideas of both BPSO and EA where BPSO helps to enhance the offspring created by EA in 
order to generate fitter feature combinations (elites) in each epoch, EABPSO has the ability to attain the best RMSE at a 

0.12
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Training Epoch(T)

EA
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higher speed. Also, with N features, the computational complexity is on the order of O(N!) if every possible combination 
of features is explored. The PSO/EA and EABPSO reduce the complexity to O(N). 

 

5.1 Discussion 
As seen in Table 2, the best overall classification accuracy of 87.5% was achieved with feature subset selected by BPSO 
(case 2) and EABPSO (case 3) for population size 20 and training epoch 100/150.  For six different combinations of 
population size (M) and training epoch (T), EABPSO has the best accuracy. The average overall classification accuracy, 
87.0% was achieved by both EA and EABPSO. This shows that EABPSO keeps delivering good and consistent results.  
Further, with the same particle size (M =30) as the epoch increases from 100 to 150 the average accuracy increases in 
EA (case 1) while staying the same in both BPSO (case 2) and EABPSO (case 3). This is due to longer convergence time 
for EA also shown in Figure 5. For six different combinations of population size (M) and training epoch (T), the number 
of features for the best subset obtained by EABPSO (case 3) stays around 45, while EA and BPSO have a larger range. 
Also, the advantage of using the voting algorithm for feature selection is seen through the consistently good overall 
performance of case 4 since the voting algorithm’s input features are the best selected features of cases 1,2,3. 
Justification for the usefulness of BPSO, EA and EABPSO is found through the observation that the highest classifier 
accuracies are achieved from cases 1-4.  
 
Table 2. Performance comparisons for different feature combinations. (M = population size; T = maximum #iterations, 
Performance/XX: Here XX = the number of features used in computing the performance). Best Performance in bold. 

6. CONCLUSION 
 
This paper proposes a framework for graphical image type identification based on image feature analysis and 
computational intelligence techniques [26, 27]. Several feature extraction techniques are applied to the preprocessing of 
the images. Multiple features associated with the chart types are then extracted.  EA and binary PSO are employed to 
find the optimal subset of features since both are stochastic search procedures and are generally suitable for solving the 
optimization problem. PSO has a higher convergence speed but easily trapped in local optimum while EA usually takes 
longer time to reach the global optimum although it has a mutation operator that can keep it out of local minimum. Thus 
EABPSO is proposed to combine the new individual generation functions of both EA and PSO, to attain the global 
minimum at high speed. The experimental results demonstrate that integration of various image processing techniques, 
feature extraction techniques, and computational intelligence methods for optimal feature selection as proposed in this 
paper can achieve high classification accuracy.  
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Case No. Accuracy M=20, T=50 M=20, 
T=100 

M=20, T=150 M=30, T=50 M=30, 
T=100 

M=30, 
T=150 

1. EA  (Average) 0.863 0.867 0.867 0.866 0.868 0.870 
(Best) 0.866/49 0.870/38 0.868/46 0.869/51 0.871/45 0.872/49 

2.BPSO  (Average) 0.864 0.869 0.869 0.867 0.867 0.867 
 (Best) 0.866/48 0.875/51 0.875/51 0.870/46 0.870/52 0.870/50 

3.EABPSO  (Average) 0.870 0.870 0.870 0.868 0.869 0.869 
 (Best) 0.872/48 0.875/45 0.875/46 0.871/48 0.872/43 0.872/43 

4.Voting 
algorithm 

Accuracy  0.870 0.872 0.872 0.869 
 

0.870 0.870 

5.Chi square  Accuracy 
 

0.846 
 

0.851 0.851 0.846 0.837 0.837 

6.Information 
gain 

Accuracy  0.846 0.850 0.850 0.846 0.836 0.836 

7.All features Accuracy 0.863 
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