305,587 research outputs found
Research in computer science
The research efforts of University of Virginia students under a NASA sponsored program are summarized and the status of the program is reported. The research includes: testing method evaluations for N version programming; a representation scheme for modeling three dimensional objects; fault tolerant protocols for real time local area networks; performance investigation of Cyber network; XFEM implementation; and vectorizing incomplete Cholesky conjugate gradients
Towards automatic extraction of definitions
Definition extraction can be useful for the creation of glossaries and in question answering systems. It is a tedious task to extract such sentences manually, and thus an automatic system is desirable. In this work we review various attempts at rule-based approaches reported in the literature and discuss their results. We also propose a novel experiment involving the use of genetic programming and genetic algorithms, aimed at assisting the discovery of grammar rules which can be used for the task of definition extraction.peer-reviewe
Research in computer science
Several short summaries of the work performed during this reporting period are presented. Topics discussed in this document include: (1) resilient seeded errors via simple techniques; (2) knowledge representation for engineering design; (3) analysis of faults in a multiversion software experiment; (4) implementation of parallel programming environment; (5) symbolic execution of concurrent programs; (6) two computer graphics systems for visualization of pressure distribution and convective density particles; (7) design of a source code management system; (8) vectorizing incomplete conjugate gradient on the Cyber 203/205; (9) extensions of domain testing theory and; (10) performance analyzer for the pisces system
Computer science in Dutch secondary education: independent or integrated?
Nowadays, in Dutch secondary education, computer science is integrated within school subjects. About ten years ago computer science was considered an independent subject, but in the mid-1980s this idea changed. In our study we investigated whether the objectives of teaching computer science as an independent subject are met when computer science is integrated within school subjects. The main problem was that there was no formal curriculum of computer science as an independent subject. Therefore we interviewed 13 experts in the field of computer science and then compared this formal curriculum with the operational (integrated) curriculum, which is still in the development stage. It appears that most of the components of the formal curriculum are being covered by the operational curriculum, and we therefore concluded that these curricula are equivalent, although there may be differences in the level of teaching. In our opinion the best approach to computer science is to combine the independent and the integrated approaches
Research in computer science
Synopses are given for NASA supported work in computer science at the University of Virginia. Some areas of research include: error seeding as a testing method; knowledge representation for engineering design; analysis of faults in a multi-version software experiment; implementation of a parallel programming environment; two computer graphics systems for visualization of pressure distribution and convective density particles; task decomposition for multiple robot arms; vectorized incomplete conjugate gradient; and iterative methods for solving linear equations on the Flex/32
Julia: A Fresh Approach to Numerical Computing
Bridging cultures that have often been distant, Julia combines expertise from
the diverse fields of computer science and computational science to create a
new approach to numerical computing. Julia is designed to be easy and fast.
Julia questions notions generally held as "laws of nature" by practitioners of
numerical computing:
1. High-level dynamic programs have to be slow.
2. One must prototype in one language and then rewrite in another language
for speed or deployment, and
3. There are parts of a system for the programmer, and other parts best left
untouched as they are built by the experts.
We introduce the Julia programming language and its design --- a dance
between specialization and abstraction. Specialization allows for custom
treatment. Multiple dispatch, a technique from computer science, picks the
right algorithm for the right circumstance. Abstraction, what good computation
is really about, recognizes what remains the same after differences are
stripped away. Abstractions in mathematics are captured as code through another
technique from computer science, generic programming.
Julia shows that one can have machine performance without sacrificing human
convenience.Comment: 37 page
- …
