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Abstract. Definition extraction can be useful for the creation of glos-
saries and in question answering systems. It is a tedious task to extract
such sentences manually, and thus an automatic system is desirable. In
this work we review various attempts at rule-based approaches reported
in the literature and discuss their results. We also propose a novel exper-
iment involving the use of genetic programming and genetic algorithms,
aimed at assisting the discovery of grammar rules which can be used for
the task of definition extraction.

1 Introduction

A definition is a term together with a description of its meaning or the concept it
refers to. Definitions are helpful because they facilitate the understanding of new
terms. The extraction of definitions from text can be useful in various scenarios,
including the automatic creation of glossaries for the building of dictionaries and
in question answering systems. In this work, we will focus on the use of defini-
tion extraction in eLearning, where definitions can help learners conceptualise
new terms and help towards the understanding of new concepts encountered in
learning material.
eLearning is the process of acquiring knowledge through electronic aids, by pro-
viding access to materials that will enable them to learn a particular task. A
tutor can direct the learning process through a Learning Management System
(LMS), where learning material is presented to the student according to the
tutor’s direction. The tutor can also use the LMS to add new content, create
courses, structure layout and presentation of courses and monitor student per-
formance.
Learning material, packaged into units known as learning objects (LOs), nor-
mally contain implicit information in natural language, which would require a
lot of work for the tutor to extract manually. An LMS can be enhanced by
introducing tools to extract such information automatically. One such piece of
information is the presence of definitions in texts. We propose a tool that will
attempt to extract definitions from LOs, which an LMS could use to extract
definitions (for instance, to be used to create a glossary). The tutor will then be
able to refine this information rather than create it from scratch.
The task of definition extraction is a challenging one. We are trying to identify
sentences that contain knowledge which could then be used by applications such
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as those mentioned above. What more, we are attempting to identify sentences
which define a term, rather than simply describe it vaguely, or compare it to
other terms.
Since definitions are made up of natural language texts, we propose to use lin-
guistic knowledge such as part-of-speech tagging and morphological analysis to
support the definition extraction. Furthermore, it was noticed that there exist
different syntactic forms of definitions. Hence, rather than trying to identify
arbitrary definitions, we propose to look at the different definition categories
separately.
We propose an experiment in Section 2 which combines genetic algorithms (GA)
and genetic programming (GP) to try and discover grammar rules that could
identify definitions present in LOs. Section 3 will review the work related to
our task, divided into two parts. First we look at different approaches in defi-
nition extraction using rule-based techniques. Then we will look at the area of
grammatical inference and the application of GAs and GPs to learn grammars.
The outcome of this work is to evaluate the use of machine learning techniques
(GAs and GPs) and their results in learning restricted grammars. The gram-
mars developed through these experiments can then be applied by rule-based
techniques to extract definitions. The results of the GP and the GA will be used
to discover features which identify certain definitions with a high rate of accu-
racy, but also other features to classify less clearcut definitions using features in
a combined manner.
This work is done in collaboration with an EU-funded FP6 project LT4eL3. The
project is described in more detail in [BR07] and [MLS07], and aims at enhancing
LMSs by using language technologies and semantic knowledge.

2 Proposed Approach

In eLearning, LOs are generally created by tutors in different formats such as
HTML, PDF and other text formats. A corpus of LOs, gathered within the
LT4eL project, has been converted to one standard XML format with added lin-
guistic information. Work carried out in the project has also manually identified
and annotated a set of 450 definitions from this corpus.
Given that a corpus contains both a set of definitions and a (usually larger)
set of non-definitions, an attempt to learn the importance of features present in
definitions is possible. A feature can be seen as a description of characteristics
that can help us identify a definition. To simplify the identification process, def-
initions have been split into six different categories (as described in [BR07]). By
learning to identify the categories separately, we reduce the size and complexity
of the search space.

3 Language Technologies for Learning www.lt4el.eu
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2.1 Experiment One: Genetic Algorithm

A genetic algorithm (GA) [Hol75,Gol89] is a possible technique that can be used
to learn the importance of the features that can recognise definitions. This can be
done by assigning weights to each feature and allowing the algorithm to adjust
the weights according to the performance. It also makes it ideal to run the GA
on the separate categories of definitions identified (as described in [BR07]), so
that the results can be directed to one given situation at a time.
A feature is a function which given a sentence (which includes linguistic infor-
mation) returns a numeric score. An example of a feature would be that of a
part-of-speech sequence that may capture a definition — returning a numeric
value indicating how close the given sentence matches that particular sequence
(e.g. DT→NN→VBZ→DT→NN→IN→NNS). An other example of a feature is
a test whether the sentence contains the verb ‘to be’ — with the only possible
values of the score now being 1 or 0, indicating the presence or otherwise of the
verb. A feature is said to be an effective classifier of definitions if it gives higher
scores to sentences which define a term than to other sentences.
Given a set of n basic features, f1 to fn, and n numeric constants, α1 to αn, one
can produce a new feature combining these basic features in a linear fashion:

F (s) =
n∑
i=1

αi × fi(s)

The problem is now: given a fixed set of features, how can we calculate a good
set of weights so as to maximise the effectiveness of the combined features as a
definition classifier? We propose to use a GA to learn these weights. The values
learnt would thus correspond to the relative effectiveness of the individual fea-
tures as classifiers of definitions. Before starting the experiment, a predefined set
of features will be adopted, which will remain static throughout the experiment.
A gene will be a list of length equal to the number of predefined features of
numbers. Thus, the ith gene (1 ≤ i ≤ populationsize) will have the following
structure:

gi = 〈αi,1, αi,2 . . . αi,n〉
Note that n corresponds to the number of predefined features. The interpretation
of the gene is thus a list of weights which will be applied to the output of the
predefined features. For instance, αi,1 is the weight that the gene gi would assign
to the first feature. Such a gene will therefore return a score to a given sentence
s as follows:

scorei(s) =
n∑
j=1

fj(s)× αi,j

The initial population will consist of genes that contain random weights assigned
to each feature. The interpretation of the gene is a function that when applied



Towards Automatic Extraction of Definitions 55

to a sentence gives the summation of the feature-function scores multiplied by
their weights.
The fitness function will take an individual and produce a score according to its
performance. The score will be calculated by applying the gene to both positive
and negative examples and will be judged according to how the gene is able to
separate the two sets of data from each other.
Crossover and mutation will be carried out in the traditional way of GA. Crossover
will take two individuals, split them at a random position and create two new
children by interchanging the parts of the parents. Mutation will take a random
position in the gene and change its value. If the children perform better than
the parents, they will replace them.
Once the population converges, the weights of the best individual would give the
clearest separating threshold between definitions and non-definitions. This will
also allow us to identify which of the features in the predefined feature set are
most important.

2.2 Experiment Two: Genetic Programming

Genetic Programming (GP) [Koz92] is a technique that uses GA principles to
evolve simple programs. The main difference between GAs and GPs is the repre-
sentation of the population and how the operations of crossover and mutation are
carried out. The members of the population are parse trees, usually of computer
programs, whose fitness is determined by execution. Crossover and mutation are
carried out on subtrees, ensuring that the resulting tree would still be of the
correct structure.
Whereas the scope of the previous experiment was to learn which are the best
performing features for the task of definition extraction from a set of predefined
ones, this experiment aims at identifying new features. The choice of what type
of structure we are trying to learn determines the complexity of the search space.
In our application, two possible options could be regular languages (in the form
of regular expressions) or context-free languages (in the form of context-free
grammars), the latter having a larger search space than the former. Through
observations and current work with lxtransduce [Tob05], regular expressions (ex-
tended with a number of constructs) should be sufficient to produce expressions
that would, in most cases, correctly identify definitions.
Both basic and combined features used in the GA can serve to inject an initial
population into the GP. The selection can be made based on the weights learned
by the GA and translating those features into extended regular expressions.
The extensions that are being considered are conjunction (possibly only at the
top level due to complexity issues), negation and operators such as contains
sub-expression. Note that some of these can already be expressed as regular
expressions, however, introducing them as a new single operator helps the genetic
program learn faster.
The population will evolve with the support a fitness function in order to select
those individuals for mating. The fitness function can apply the extended regular
expressions on the given training set and then use measurements such as precision
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and recall over the captured definitions. Such measurements can indicate the
performance of the individuals and will allow us to fine-tune the GP according
to the focus of the experiment (where one could emphasis on a high percentage
for one measurement at a time, or take an average for both). This flexibility
will also allow us to have different results in the various runs of the experiment,
where, for instance, in one we could try to learn over-approximations whereas in
an other we can learn an under-approximation.
Crossover takes two trees and creates two new children by exchanging nodes
with a similar structure. If an offspring is able to parse correctly one definition,
it survives into the next generation, otherwise it is discarded. Parents would
normally also be retained in the population, since we would not want to lose
the good individuals (it is not obvious that their offspring would have the same
capability of correctly identifying definitions).
Mutation takes an individual and selects at random one node. If that node is a
leaf, it is randomly replaced by a terminal symbol. If it is an internal node, it
is randomly replaced by one of the allowed operators. Once again, the new tree
is allowed to survive to the next generation only if it is able to capture at least
one definition.
Once the GP converges, we expect to have new expressions that would capture
some aspects of a definition. The application of this program will allow us to
extend our current set of grammar rules by deriving new rules from the above
operations. Although we do not expect the GP to learn rules, it will help towards
the discovery of new rules which might have been overlooked, and thus helping
towards a more complete grammar for definition extraction.
The GP will also allow the flexibility of running this experiment separately for
each of the categories of the definitions as identified in section 2.2. This means
that the new features being learned will be restricted to one category at a time.

2.3 Combining the Two Experiments

The role of this work is to develop techniques to extract definitions. The two
experiments are independent of each other. The GA takes a set of features and
assigns a weight to each feature, whereas the GP learns new features through the
evolution of the population of extended regular expressions. We can combine the
two experiments by migrating the new features learned by the GP to augment
the feature set which is used in the GA.
In the final definition extractor one can start by checking whether a given sen-
tence can be confidently classified as a definition by using the features learnt
by the GP, possibly giving a preference to over– or under–approximations. One
would then run the weighted sum and threshold as learned by the GA based on
the features we manually identified and others that the GP may have learned.
Clearly the training of the GA would have to be done on a subset of the train-
ing set, removing the confidently classified non/definitions. We believe that this
approach will improve the quality of the definition identifier.
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3 Literature Review

We split this review into two main parts, starting with an overview of published
results using rule-based definition extraction, followed by work in grammatical
inference which applies GAs and GPs. A final discussion comparing the proposed
work to the work reviewed, then follows.

3.1 Rule-Based Definition Extraction

Work carried out on automatic creation of glossaries usually tends to be rule-
based, taking into consideration mainly part-of-speech as the main linguistic
feature. Park et al. [PBB02] propose a system whereby glossary candidates are
presented to an expert in the relevant domain to be approved and made available
through an API. In their work, they concentrate on detecting the terms and their
glosses rather than full definitions. Glosses present a summary of the meaning,
usually giving the full form of an abbreviation or a variant of the term. They
also deal only with technical texts, where glosses are normally well structured.
They propose a pipeline architecture using several tools, including POS tagging
and morphological analysis, with each tool providing additional annotations.
The glossary extraction algorithm first looks at the possible linguistic structure
of glossary items found technical texts. They identify POS structures for noun
phrases or verbs, which are used to identify possible glosses. These are described
as a cascade of finite-state transducers, which are easy to extend and re-use
even across different languages. An observation they make is that is difficult
to identify glosses by simply looking at POS sequences, since many other non-
gloss items would have the same sequence. To overcome this problem, rules are
applied to discard certain forms from the candidate set. These include person
and place names, special tokens such as URLs, words containing symbols (except
for hyphens and dashes) and candidates having more than six words.
Variants are identified, grouped and one is set at the canonical form, others listed
as variants (including misspelt items and abbreviations). Finally all glossary
candidates are ranked and presented to the expert. In the evaluation of their
work, three human experts accepted 228 (76%), 217 (72%), and 203 (68%) out
of the top 300 as valid glossary items. The evaluation does not consider missed
definition which ranked lower. Inter-annotater agreement is not discussed in this
evaluation.
Klavans and Muresan [KM00] propose a system, Definder, to extract definitions
from technical, medical texts. The corpora used comprise of consumer-oriented
texts, were a medical term is explained in general language words in order to
provide a paraphrase. The aim for their system is to be able to extract definitions
that can then be fed into a dictionary. Their approach uses NLP techniques to
identify definitions and synonyms (which are also considered as definitions in
this context). They point out that the structure of definitions might not follow
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the genus et differentia4 model and that the different styles of writing can be a
challenge for the automatic identification of definitions.
Definder first identifies candidate phrases by looking for cue-phrases such as
“is called a”, “is the term for”, “is defined as”, or a set of punctuation marks
which are deemed important for this task (namely :, (, ), -). A finite state
grammar is then applied to extract the definitions. The system uses part-of-
speech and noun phrase chunking to help with the identification process. In order
to improve results, the Definder uses statistical information from a grammar
analysis module. The authors claim that doing so takes into account the styles
for writing of definitions (apposition, relative clauses, anaphora). In this work we
see that the automatic identification of definitions is mainly based on the primary
identification of certain phrases, and then further filtered through certain rules
that reinforce a sentence being a definition (such as its POS structure).
Klavans et al. [KPP03] look at the Internet as a corpus, focusing mainly on large
government websites, trying to identify definitions by genus to extract concep-
tual relations for ontology building. In this task, several problems are identified,
including the format of the definitions and the content in which they are present.
Definitions on the Internet can be ambiguous, uncertain or incomplete. They are
also being derived from heterogeneous document sources. Another problem en-
countered is that the Internet is a dynamic corpus, and websites could change
their information over time. An interesting discussion is presented in how to
evaluate a definition extractor, proposing a Gold Standard for such a type of
evaluation, based on qualitative evaluation apart from the standard quantita-
tive metrics.
Liu et al. [LCN03] are interested in definition extraction of concepts for learning
purposes. Their strategy to assist learning is to present learners with definitions
of concepts, and the sub-topics or salient concepts of the original topic. Their
system queries search engines with a concept, and the top 100 ranked results are
retrieved. In order to discover salient and sub-topics, they look at layout infor-
mation presented in the html tags for features such as headings, bold and italic.
A rule-based approach is then applied to filter out items which are generally
also highlighted in webpages (such as company names, URLs, lengthy descrip-
tions). Further filtering is applied through stopword removal, taking frequency
into consideration and ranking the proposed salient or sub-topics.
Definition extraction is then attempted for the concepts and sub-concepts iden-
tified in the first phase of their work. The identification is carried out through
rule-based patterns, (e.g. {concept} {refers to | satisfies}. . . ). Webpages contain-
ing definitions are attached to the concept, and presented to the user in ranked
order. The ranking is based on how many concepts/definitions are present in a
webpage (the more being available, the higher the ranking as it is considered
more informative).
Liu et al. also propose a way of dealing with ambiguity, where the term being
learned is too generic and may appear in different context (e.g. classification may

4 A genus et differentia definition first describes the term explain the broader concept,
the genus, and then distinguishes from other items in the category by differentia
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be used in library classification, product classification, data mining classification,
etc.). Again, to differentiate between different contexts, the term is allocated a
parent topic, and through the use of document layout structure a hierarchical
structure of topics is built accordingly. Mutual reinforcement is also used to
provide further evidence of the hierarchy built, by further searching for sub-topics
under a particular concept. This generally would result in finding information
about other salient topics under that same concept, which thus continues to
re-ensure that the sub-topics are related and belong to the parent concept.

It is interesting to note that the definition extraction phase is preceded by a
phase of concept identification, simplifying the task of definition extraction.
However, the search for definitions is carried out on particular concepts, and
not all definitions contained in a given text. This might result in definitions of
other concepts present in parsed documents being lost. The work also does not
make any use of linguistic information, since at their level of processing simple
pattern matching on particular keywords is sufficient. The web is a very large
corpus and thus can provide many documents containing definitions. However,
this can also be a disadvantage affecting the quality of definitions found, similar
to the problems encountered by [KPP03] described above (i.e. ambiguous, uncer-
tain or incomplete definitions). This is partially surpassed by providing several
resulting definitions, and documents containing more definitions (which might
be more authoritative) are presented first. However, quality of definitions is im-
portant in any learning phase, and can determine the learner’s understanding of
a concept.

Storrer and Wellinghoff [SW06] report work on definition classification based on
19 primary verbs, specified in valency frames. These frames indicate what argu-
ments a verb takes, such as object, subject, position and prepositions. This frame
can be used to match the structure of a sentence containing one of the specified
19 verbs. Thus definitions are extracted by using the valency frames specified for
the defining verbs. The approach presented in the paper is a rule-based expert
driven, with all information being provided by human experts (valency frame,
definition categorisation). This is possible because they are looking at techni-
cal texts, where definitions are well-structured, frequently matching more crisp
rules.

Fahmi and Bouma [Fah06] tackle the problem of definition extraction using an
incremental approach, starting with individual words, then adding syntactic fea-
tures etc. They look at the potential definition sentences that fall into our first
category (containing the verb to be) from a Dutch corpus of medical articles
extracted from Wikipedia. These sentences are manually annotated as defini-
tions, non-definitions and undecided, and this corpus of sentences is used as
their training and evaluation data for the experiments carried out. They iden-
tify several attributes that could be of importance to the experiments, namely
text properties, sentence position, syntactic properties and named entity classes.
Learning-based methods are then used to identify which of these features, or
combination of, would provide the best results. These feature combinations can
also be considered for the experiments described above.
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3.2 Grammatical Inference Using GAs and GPs

Identifying grammars for definition extraction is closely related to grammatical
inference — the use of machine learning techniques to learn grammars from data.
GAs, and less frequently GPs, are two such techniques which have been applied
to grammatical inference.

Genetic Algorithms

Lankhorst [Lan94] describes a genetic algorithm used to infer context-free gram-
mars from positive and negative examples of a language. The schema theorem
states that schemas occurring in the higher scoring individuals will tend to oc-
cur more frequently in following generations. This feature, also referred to as the
building blocks hypothesis, is the motivation for applying GAs to grammatical
inference. New, possibly better performing, grammar rules may be discovered by
combining parts of different grammar rules.
A discussion is presented on the choice of gene representation, between a binary
representation and a high-level representation. It is argued that a bit string can
represent many more schemata than higher level representations, yielding to a
better coverage of the search space. A bit representation is chosen, with the lower
order bits encoding grammar rules on the right hand side of the rule, whereas
higher order bits are encoding the left-hand side symbol.
Selection is based on a stochastic universal sampling algorithm, that helps to
prevent premature convergence by ‘holding back’ super individuals from tak-
ing over the population within a few generations. The best individual is also
always allowed to survive to the next generation. Mutation allows for a bit in
a chromosome to be mutated. However, this operation is given a low probabil-
ity so as not to change the population randomly. Reproduction is effected by
the schema chosen. The crossover point is influenced by how the representation
of the rule is expressed. Lankhorst choses a two-point crossover system, thus
allowing right-hand side rules to crossover more easily.
The grammars that Lankhorst is learning with the GA are aimed to classify pos-
itive and negative examples over a language correctly. Thus the fitness function
that is considered takes into consideration the correct classification of positive
and negative examples. For various sets of languages, such as matching bracket-
ing and ‘0*1*0*1*’, the fitness function allows the population to converge into a
solution within reasonable results. However, for a micro–NL language, the fitness
function did not result in a correct grammar. A further adjustment to the fitness
function also allows correct classifications of substrings to influence the fitness
score. This modified fitness function allows the GA for a micro–NL grammar to
converge correctly.
This work provides an interesting insight to different techniques of how the fitness
of an individual should be calculated. Different fitness functions will output
different results and it is important to explore alternatives. In our case we would
like to take into consideration which measures should be given more importance
to (e.g. recall, precision or F-measure). The representation of an individual is
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also important, Lankhorst having selected a bit–representation over a higher-
level representation such as trees. Tree representations can be easily applied
with Genetic Programming, and yet, exactly the same principles/discussions
apply with respect to the fitness function.

Losee [Los96] applies a GA to learn the syntactic rules and tags with a direct
application in document retrieval. The system parses just over 100 abstracts, all
about the same general topic, subdivided into 5 different subtopics. The task of
the system is to retrieve the documents in the ideal ranking order according to the
search term used. The GA is applied to learn syntactic rules and tags, and thus
provides linguistic meaning to both documents and terms. As a fitness function,
the GA uses a weighted function of the resulting ranking of the document and
the average maximum parse length.

Belz and Eskikaya [BE98] attempt grammatical induction from positive data
sets in the field of phonotactics. The grammar is represented with finite state
automata, and looks at the use of GA for this task. In this paper two results
are produced, one for German syllables and the other for Russian bisyllabic
words. The GA is described in detail, including the type of methods selected, and
chromosome representation. The GA used is a fine-grained one, where individuals
are on a 2–D grid of fixed size and are only allowed to mate with one of their
neighbours (this implementation is referred to as a torus).

They argue that an important issue is the representation used for individuals.
They present two alternatives: (1) production rules of the form s1 → as2 and
s1 → a (where s is a non–terminal symbol and a is a terminal symbol), or (2)
a state transition matrix. They argue that production rules produce more fine
grained genotype representations since the terminals and non–terminals can be
represented individually. On the other hand, state transition matrices can be
only seen as a whole, each represented by a single cell. The final representation
chosen for this work is that of transition matrices. Each individual represents a
possible transition matrix which in turn represents the grammar being induced.
In order for genetic algorithms to be used, the matrix is ‘flattened’ into one
string (one row after the other).

The chosen representation has direct implications on the rest of the GA oper-
ations. Crossover and mutation cannot be carried out in the traditional sense
of GAs, and certain knowledge must be present in the GA so as to maintain a
sound structure of this flat matrix. Belz and Eskikaya seem not to have consid-
ered GPs and tree representation for their problem. Such consideration could
have provided an interesting alternative in their work.

Keller and Lutz [KL97] attempt learning Context Free Grammars through the
use of GAs, by learning probabilities to all possible grammar rules. The initial
population of the GA is made of all possible combinations of terminals and non–
terminals of the form A→ BC and A→ a, where A,B and C are non–terminals
and a is a terminal. This guarantees that, although the grammar is a large one,
it is finite. There is also no loss of generality, as all possible rules are present in
the initial grammar (including those that will not be part of the final solution).
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The type of GA chosen for this work also uses a 2–D grid representation in
torus formation, where mating occurs only with immediate neighbours. Each
individual is encoded as a set of weights, each weight relevant to one parameter.
The weight is represented as an n–bit block, and an individual can be viewed as
consisting of M blocks of n–bits, where M is the number of all possible rules.
Since the grammar is considerably larger than the final solution, Keller and Lutz
try to give more importance to 0–probability assignment. Thus, the initial bit/s
of the n–bit block is seen as a “binary–switch” as to whether the rest of the bits
should be taken into consideration or not.
As for crossover, Keller and Lutz achieved better performance by using a novel
genetic operator which they call and–or crossover than by the classical crossover
operation. The and–or crossover looks at the parents bit by bit, with one child
taking the bits produced by the and operator (conservative), and the other child
takes the bits produced by the or operator (liberal). In our proposed work, this
idea of the bit-by-bit crossover can be adapted slightly to use functions such as
minimum, average and maximum to develop new children.
Spasić et al. [SNA04] aim at classifying biomedical terms into specific classes,
which represent concepts from an ontology in the biomedicine domain. In or-
der to derive the possible class of a term, they look at the surrounding context
of that term. This context is learned through data mining, extracting the con-
textual patterns surrounding the terms. The patterns contain morph-syntactic
and terminological information and are represented as generalised regular ex-
pressions. Each contextual pattern is then given a value indicating its statistical
relevance. They use this to remove the top and bottom ranked features since
they are considered too general or too rare to play a role in term classification.
Class selection of a term is then learned using a Genetic Algorithm. For a par-
ticular class, the GA tries to learn which of the contextual patterns are relevant.
Each individual in the GA is a subset of contextual patterns and its fitness cor-
responds to the precision and recall of using these patterns on the training data.
Eventually the GA learns a good subset of features which can be used to identify
terms in that class.

Genetic Programming

Smith and Witten [SW95] propose a GP that adapts a population of hypothesis
grammars towards a more effective model of language structure. They discuss
grammatical inference using statistical methods, and the problems encountered
in their work. They point out that probabilistic n–gram models allow frequent,
well-formed expressions to statistically overwhelm infrequent ungrammatical ex-
pressions. There is also the problem with allowing probability for unseen data.
The ‘zero-frequency problem’ entails assigning a small probability to all unseen
data, resulting in both ungrammatical n–grams becoming as probable as unseen
grammatical ones.
The population is represented as LISP AND–OR S–expressions. Initial exper-
iments showed that certain constraints were required in order for the GP to
evolve. These constraints included a maximum depth for nesting and a grammar-
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generator to allow the GP to evolve towards more suitable grammars. With these
constraints in place, the GP evolves simple grammars even within 2 generations,
forming simple sentences such as ‘the dog saw a cat’. However, the GP is left to
run over more generations to achieve a broader exploration of the search space
and hopefully result in a more efficient grammar. Although the results seem
positive, there is no comparison to other statistical techniques mentioned that
attempt grammatical inference.

3.3 Discussion

Work carried out in definition extraction shows that although it is possible to
achieve a good basis for a grammar through manual observation, this task re-
quires specialized linguistic understanding of grammatical features present in
definitions. Ideally, a filtering or ranking mechanism is used to over and above
these techniques to further improve the results. Work by Fahmi and Bouma
[Fah06] moves towards this direction. In our proposed experiments we introduce
the concept of ranking through the use of the GA, learning weights assigned to
grammars indicating the certainty of whether the captured sentences are actually
definitions.
The GP, and in particular the gene representation, is a crucial point which comes
out clearly in the work reviewed. There is a lack of knowledge in the area of GPs,
and this is visible in the various attempts of describing a grammar as a linear
structure to work with GAs rather than taking advantage of a GP’s capability to
handle tree representation. Smith and Witten [SW95] overcome representation
issues by using grammars as LISP S–expressions. In our work, the resulting
grammar that will be produced will be used within lxtransduce [Tob05]. Thus
any type of representation chosen will be translated to the XML format accepted
by lxtransduce.
It is also clear that the fitness function will determine the success of the experi-
ments. Since we have to our availability manually annotated definitions, precision
and recall could be used as part of the fitness function. However, different tests
could be carried out to determine what should comprise the fitness evaluation
of the population.

4 Conclusion

Attempts at definition extraction have focused mainly on rule-based approaches,
with some later work improving results by introducing statistical analysis as a
filtering step. Our proposal introduces an element of grammar learning for the
set of definitional sentences, influenced by the work carried out in grammatical
inference. We will also use the weights produced by the GA as part of the filtering
and ranking process, as evidence to what should be classified as a definition.
The proposal takes a novel approach in combining GAs and GPs for natural
language processing. A quantitative evaluation of these techniques will compare
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the results achieved to the work carried out so far in definition extraction. The
results should be of interest not only to the natural language task of extracting
definitions, but also to the machine learning task of combining GAs with GPs.
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[SNA04] Irena Spasić, Goran Nenadić, and Sophia Ananiadou. Learning to Classify
Biomedical Terms through Literature Mining and Genetic Algorithms. In
Intelligent Data Engineering and Automated Learning (IDEAL 2004), volume
3177 of LNCS, pages 345–351. Springer-Verlag, 2004.

[SW95] Tony C. Smith and Ian H. Witten. A Genetic Algorithm for the Induction
of Natural Language Grammars. In Proceedings IJCAI-95 Workshop on New
Approaches to Learning for Natural Language Processing, Canada, pages 17–
24, 1995.

[SW06] Angelika Storrer and Sandra Wellinghoff. Automated detection and annota-
tion of term definitions in german text corpora. In LREC, 2006.

[Tob05] Richard Tobin. Lxtransduce a replacement for fsgmatch. Technical report,
University of Edinburgh, 2005.


