425 research outputs found

    Medical image computing and computer-aided medical interventions applied to soft tissues. Work in progress in urology

    Full text link
    Until recently, Computer-Aided Medical Interventions (CAMI) and Medical Robotics have focused on rigid and non deformable anatomical structures. Nowadays, special attention is paid to soft tissues, raising complex issues due to their mobility and deformation. Mini-invasive digestive surgery was probably one of the first fields where soft tissues were handled through the development of simulators, tracking of anatomical structures and specific assistance robots. However, other clinical domains, for instance urology, are concerned. Indeed, laparoscopic surgery, new tumour destruction techniques (e.g. HIFU, radiofrequency, or cryoablation), increasingly early detection of cancer, and use of interventional and diagnostic imaging modalities, recently opened new challenges to the urologist and scientists involved in CAMI. This resulted in the last five years in a very significant increase of research and developments of computer-aided urology systems. In this paper, we propose a description of the main problems related to computer-aided diagnostic and therapy of soft tissues and give a survey of the different types of assistance offered to the urologist: robotization, image fusion, surgical navigation. Both research projects and operational industrial systems are discussed

    Tools for improving high-dose-rate prostate cancer brachytherapy using three-dimensional ultrasound and magnetic resonance imaging

    Get PDF
    High-dose-rate brachytherapy (HDR-BT) is an interstitial technique for the treatment of intermediate and high-risk localized prostate cancer that involves placement of a radiation source directly inside the prostate using needles. Dose-escalated whole-gland treatments have led to improvements in survival, and tumour-targeted treatments may offer future improvements in therapeutic ratio. The efficacy of tumour-targeted HDR-BT depends on imaging tools to enable accurate dose delivery to prostate sub-volumes. This thesis is focused on implementing ultrasound tools to improve HDR-BT needle localization accuracy and efficiency, and evaluating dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) for tumour localization. First, we implemented a device enabling sagittally-reconstructed 3D (SR3D) ultrasound, which provides sub-millimeter resolution in the needle insertion direction. We acquired SR3D and routine clinical images in a cohort of 12 consecutive eligible HDR-BT patients, with a total of 194 needles. The SR3D technique provided needle insertion depth errors within 5 mm for 93\% of needles versus 76\% for the clinical imaging technique, leading to increased precision in dose delivered to the prostate. Second, we implemented an algorithm to automatically segment multiple HDR-BT needles in a SR3D image. The algorithm was applied to the SR3D images from the first patient cohort, demonstrating mean execution times of 11.0 s per patient and successfully segmenting 82\% of needles within 3 mm. Third, we augmented SR3D imaging with live-2D sagittal ultrasound for needle tip localization. This combined technique was applied to another cohort of 10 HDR-BT patients, reducing insertion depth errors compared to routine imaging from a range of [-8.1 mm, 7.7 mm] to [-6.2 mm, 5.9 mm]. Finally, we acquired DCE-MRI in 16 patients scheduled to undergo prostatectomy, using either high spatial resolution or high temporal resolution imaging, and compared the images to whole-mount histology. The high spatial resolution images demonstrated improved high-grade cancer classification compared to the high temporal resolution images, with areas under the receiver operating characteristic curve of 0.79 and 0.70, respectively. In conclusion, we have translated and evaluated specialized imaging tools for HDR-BT which are ready to be tested in a clinical trial investigating tumour-targeted treatment

    Transrectal ultrasound image processing for brachytherapy applications

    Get PDF
    In this thesis, we propose a novel algorithm for detecting needles and their corresponding implanted radioactive seed locations in the prostate. The seed localization process is carried out efficiently using separable Gaussian filters in a probabilistic Gibbs random field framework. An approximation of the needle path through the prostate volume is obtained using a polynomial fit. The seeds are then detected and assigned to their corresponding needles by calculating local maxima of the voronoi region around the needle position. In our experiments, we were able to successfully localize over 85% of the implanted seeds. Furthermore, as a regular part of a brachytherapy cancer treatment, patient’s prostate is scanned using a trans-rectal ultrasound probe, its boundary is manually outlined, and its volume is estimated for dosimetry purposes. In this thesis, we also propose a novel semi-automatic segmentation algorithm for prostate boundary detection that requires a reduced amount of radiologist’s input, and thus speeds up the surgical procedure. Saved time can be used to re-scan the prostate during the operation and accordingly adjust the treatment plan. The proposed segmentation algorithm utilizes texture differences between ultrasound images of the prostate tissue and the surrounding tissues. It is carried out in 5 the polar coordinate system and it uses three-dimensional data correlation to improve the smoothness and reliability of the segmentation. Test results show that the boundary segmentation obtained from the algorithm can reduce manual input by the factor of 3, without significantly affecting the accuracy of the segmentation (i.e. semi-automatically estimated prostate volume is within 90% of the original estimate)

    Segmentation, separation and pose estimation of prostate brachytherapy seeds in CT images.

    No full text
    International audienceIn this paper, we address the development of an automatic approach for the computation of pose information (position + orientation) of prostate brachytherapy loose seeds from 3D CT images. From an initial detection of a set of seed candidates in CT images using a threshold and connected component method, the orientation of each individual seed is estimated by using the principal components analysis (PCA) method. The main originality of this approach is the ability to classify the detected objects based on a priori intensity and volume information and to separate groups of closely spaced seeds using three competing clustering methods: the standard and a modified k-means method and a Gaussian mixture model with an Expectation-Maximization algorithm. Experiments were carried out on a series of CT images of two phantoms and patients. The fourteen patients correspond to a total of 1063 implanted seeds. Detections are compared to manual segmentation and to related work in terms of detection performance and calculation time. This automatic method has proved to be accurate and fast including the ability to separate groups of seeds in a reliable way and to determine the orientation of each seed. Such a method is mandatory to be able to compute precisely the real dose delivered to the patient post-operatively instead of assuming the alignment of seeds along the theoretical insertion direction of the brachytherapy needles

    A 3D US Guidance System for Permanent Breast Seed Implantation: Development and Validation

    Get PDF
    Permanent breast seed implantation (PBSI) is a promising breast radiotherapy technique that suffers from operator dependence. We propose and have developed an intraoperative 3D ultrasound (US) guidance system for PBSI. A tracking arm mounted to a 3D US scanner registers a needle template to the image. Images were validated for linear and volumetric accuracy, and image quality in a volunteer. The tracking arm was calibrated, and the 3D image registered to the scanner. Tracked and imaged needle positions were compared to assess accuracy and a patient-specific phantom procedure guided with the system. Median/mean linear and volumetric error was ±1.1% and ±4.1%, respectively, with clinically suitable volunteer scans. Mean tracking arm error was 0.43mm and 3D US target registration error ≤0.87mm. Mean needle tip/trajectory error was 2.46mm/1.55°. Modelled mean phantom procedure seed displacement was 2.50mm. To our knowledge, this is the first reported PBSI phantom procedure with intraoperative 3D image guidance

    Robot-Assisted Prostate Brachytherapy

    Get PDF
    Abstract: In contemporary brachytherapy procedures, needle placement at the desired target is challenging due to a variety of reasons. A robot-assisted brachytherapy system can potentially improve needle placement and seed delivery, resulting in enhanced therapeutic delivery. In this paper we present a 16 DOF (degrees-of-freedom) robotic system (9DOF positioning module and 7DOF surgery module) developed and fabricated for prostate brachytherapy. Strategies to reduce needle deflection and target movement were incorporated after extensive experimental validation. Provisions for needle motion and force feedback were included into the system for improving robot control and seed delivery. Preliminary experimental results reveal that the prototype system is sufficiently accurate in placing brachytherapy needles

    Software and Hardware-based Tools for Improving Ultrasound Guided Prostate Brachytherapy

    Get PDF
    Minimally invasive procedures for prostate cancer diagnosis and treatment, including biopsy and brachytherapy, rely on medical imaging such as two-dimensional (2D) and three-dimensional (3D) transrectal ultrasound (TRUS) and magnetic resonance imaging (MRI) for critical tasks such as target definition and diagnosis, treatment guidance, and treatment planning. Use of these imaging modalities introduces challenges including time-consuming manual prostate segmentation, poor needle tip visualization, and variable MR-US cognitive fusion. The objective of this thesis was to develop, validate, and implement software- and hardware-based tools specifically designed for minimally invasive prostate cancer procedures to overcome these challenges. First, a deep learning-based automatic 3D TRUS prostate segmentation algorithm was developed and evaluated using a diverse dataset of clinical images acquired during prostate biopsy and brachytherapy procedures. The algorithm significantly outperformed state-of-the-art fully 3D CNNs trained using the same dataset while a segmentation time of 0.62 s demonstrated a significant reduction compared to manual segmentation. Next, the impact of dataset size, image quality, and image type on segmentation performance using this algorithm was examined. Using smaller training datasets, segmentation accuracy was shown to plateau with as little as 1000 training images, supporting the use of deep learning approaches even when data is scarce. The development of an image quality grading scale specific to 3D TRUS images will allow for easier comparison between algorithms trained using different datasets. Third, a power Doppler (PD) US-based needle tip localization method was developed and validated in both phantom and clinical cases, demonstrating reduced tip error and variation for obstructed needles compared to conventional US. Finally, a surface-based MRI-3D TRUS deformable image registration algorithm was developed and implemented clinically, demonstrating improved registration accuracy compared to manual rigid registration and reduced variation compared to the current clinical standard of physician cognitive fusion. These generalizable and easy-to-implement tools have the potential to improve workflow efficiency and accuracy for minimally invasive prostate procedures

    Image-Fusion for Biopsy, Intervention, and Surgical Navigation in Urology

    Get PDF
    • …
    corecore