2,391 research outputs found

    CausaLM: Causal Model Explanation Through Counterfactual Language Models

    Full text link
    Understanding predictions made by deep neural networks is notoriously difficult, but also crucial to their dissemination. As all ML-based methods, they are as good as their training data, and can also capture unwanted biases. While there are tools that can help understand whether such biases exist, they do not distinguish between correlation and causation, and might be ill-suited for text-based models and for reasoning about high level language concepts. A key problem of estimating the causal effect of a concept of interest on a given model is that this estimation requires the generation of counterfactual examples, which is challenging with existing generation technology. To bridge that gap, we propose CausaLM, a framework for producing causal model explanations using counterfactual language representation models. Our approach is based on fine-tuning of deep contextualized embedding models with auxiliary adversarial tasks derived from the causal graph of the problem. Concretely, we show that by carefully choosing auxiliary adversarial pre-training tasks, language representation models such as BERT can effectively learn a counterfactual representation for a given concept of interest, and be used to estimate its true causal effect on model performance. A byproduct of our method is a language representation model that is unaffected by the tested concept, which can be useful in mitigating unwanted bias ingrained in the data.Comment: Our code and data are available at: https://amirfeder.github.io/CausaLM/ Under review for the Computational Linguistics journa

    An Empirical Evaluation of Visual Question Answering for Novel Objects

    Full text link
    We study the problem of answering questions about images in the harder setting, where the test questions and corresponding images contain novel objects, which were not queried about in the training data. Such setting is inevitable in real world-owing to the heavy tailed distribution of the visual categories, there would be some objects which would not be annotated in the train set. We show that the performance of two popular existing methods drop significantly (up to 28%) when evaluated on novel objects cf. known objects. We propose methods which use large existing external corpora of (i) unlabeled text, i.e. books, and (ii) images tagged with classes, to achieve novel object based visual question answering. We do systematic empirical studies, for both an oracle case where the novel objects are known textually, as well as a fully automatic case without any explicit knowledge of the novel objects, but with the minimal assumption that the novel objects are semantically related to the existing objects in training. The proposed methods for novel object based visual question answering are modular and can potentially be used with many visual question answering architectures. We show consistent improvements with the two popular architectures and give qualitative analysis of the cases where the model does well and of those where it fails to bring improvements.Comment: 11 pages, 4 figures, accepted in CVPR 2017 (poster

    Discovery and recognition of motion primitives in human activities

    Get PDF
    We present a novel framework for the automatic discovery and recognition of motion primitives in videos of human activities. Given the 3D pose of a human in a video, human motion primitives are discovered by optimizing the `motion flux', a quantity which captures the motion variation of a group of skeletal joints. A normalization of the primitives is proposed in order to make them invariant with respect to a subject anatomical variations and data sampling rate. The discovered primitives are unknown and unlabeled and are unsupervisedly collected into classes via a hierarchical non-parametric Bayes mixture model. Once classes are determined and labeled they are further analyzed for establishing models for recognizing discovered primitives. Each primitive model is defined by a set of learned parameters. Given new video data and given the estimated pose of the subject appearing on the video, the motion is segmented into primitives, which are recognized with a probability given according to the parameters of the learned models. Using our framework we build a publicly available dataset of human motion primitives, using sequences taken from well-known motion capture datasets. We expect that our framework, by providing an objective way for discovering and categorizing human motion, will be a useful tool in numerous research fields including video analysis, human inspired motion generation, learning by demonstration, intuitive human-robot interaction, and human behavior analysis
    • …
    corecore