630 research outputs found

    Automatic Image Captioning with Style

    Get PDF
    This thesis connects two core topics in machine learning, vision and language. The problem of choice is image caption generation: automatically constructing natural language descriptions of image content. Previous research into image caption generation has focused on generating purely descriptive captions; I focus on generating visually relevant captions with a distinct linguistic style. Captions with style have the potential to ease communication and add a new layer of personalisation. First, I consider naming variations in image captions, and propose a method for predicting context-dependent names that takes into account visual and linguistic information. This method makes use of a large-scale image caption dataset, which I also use to explore naming conventions and report naming conventions for hundreds of animal classes. Next I propose the SentiCap model, which relies on recent advances in artificial neural networks to generate visually relevant image captions with positive or negative sentiment. To balance descriptiveness and sentiment, the SentiCap model dynamically switches between two recurrent neural networks, one tuned for descriptive words and one for sentiment words. As the first published model for generating captions with sentiment, SentiCap has influenced a number of subsequent works. I then investigate the sub-task of modelling styled sentences without images. The specific task chosen is sentence simplification: rewriting news article sentences to make them easier to understand. For this task I design a neural sequence-to-sequence model that can work with limited training data, using novel adaptations for word copying and sharing word embeddings. Finally, I present SemStyle, a system for generating visually relevant image captions in the style of an arbitrary text corpus. A shared term space allows a neural network for vision and content planning to communicate with a network for styled language generation. SemStyle achieves competitive results in human and automatic evaluations of descriptiveness and style. As a whole, this thesis presents two complete systems for styled caption generation that are first of their kind and demonstrate, for the first time, that automatic style transfer for image captions is achievable. Contributions also include novel ideas for object naming and sentence simplification. This thesis opens up inquiries into highly personalised image captions; large scale visually grounded concept naming; and more generally, styled text generation with content control

    Automatic image captioning

    Get PDF
    In this paper, we examine the problem of automatic image captioning. Given a training set of captioned images, we want to discover correlations between image features and keywords, so that we can automatically find good keywords for a new image. We experiment thoroughly with multiple design alternatives on large datasets of various content styles, and our proposed methods achieve up to a 45% relative improvement on captioning accuracy over the state of the art

    GCap: Graph-based automatic image captioning

    Get PDF
    Given an image, how do we automatically assign keywords to it? In this paper, we propose a novel, graph-based approach (GCap) which outperforms previously reported methods for automatic image captioning. Moreover, it is fast and scales well, with its training and testing time linear to the data set size. We report auto-captioning experiments on the "standard" Corel image database of 680 MBytes, where GCap outperforms recent, successful auto-captioning methods by up to 10 percentage points in captioning accuracy (50% relative improvement). © 2004 IEEE

    Language Models for Image Captioning: The Quirks and What Works

    Full text link
    Two recent approaches have achieved state-of-the-art results in image captioning. The first uses a pipelined process where a set of candidate words is generated by a convolutional neural network (CNN) trained on images, and then a maximum entropy (ME) language model is used to arrange these words into a coherent sentence. The second uses the penultimate activation layer of the CNN as input to a recurrent neural network (RNN) that then generates the caption sequence. In this paper, we compare the merits of these different language modeling approaches for the first time by using the same state-of-the-art CNN as input. We examine issues in the different approaches, including linguistic irregularities, caption repetition, and data set overlap. By combining key aspects of the ME and RNN methods, we achieve a new record performance over previously published results on the benchmark COCO dataset. However, the gains we see in BLEU do not translate to human judgments.Comment: See http://research.microsoft.com/en-us/projects/image_captioning for project informatio

    Areas of Attention for Image Captioning

    Get PDF
    We propose "Areas of Attention", a novel attention-based model for automatic image captioning. Our approach models the dependencies between image regions, caption words, and the state of an RNN language model, using three pairwise interactions. In contrast to previous attention-based approaches that associate image regions only to the RNN state, our method allows a direct association between caption words and image regions. During training these associations are inferred from image-level captions, akin to weakly-supervised object detector training. These associations help to improve captioning by localizing the corresponding regions during testing. We also propose and compare different ways of generating attention areas: CNN activation grids, object proposals, and spatial transformers nets applied in a convolutional fashion. Spatial transformers give the best results. They allow for image specific attention areas, and can be trained jointly with the rest of the network. Our attention mechanism and spatial transformer attention areas together yield state-of-the-art results on the MSCOCO dataset.o meaningful latent semantic structure in the generated captions.Comment: Accepted in ICCV 201

    Review Paper on Enhanced Image Captioning with Deep Learning: Encoder-Decoder and Attention Mechanism

    Get PDF
    Image captioning involves the generation of textual descriptions that describe the content within an image. This process finds extensive utility in diverse applications, including the analysis of large, unlabelled image datasets, uncovering concealed patterns to facilitate machine learning applications, guiding self-driving vehicles, and developing software solutions to aid visually impaired individuals. The implementation of image captioning relies heavily on deep learning models, a technological frontier that has simplified the task of generating captions for images. This paper focuses on the utilisation of encoder-decoder model with attention mechanism for image captioning. In classic image captioning model, the words usually describe only a part of the image, however with attention mechanism special attention is given to the low level and high level features of the image. Object detection using attention mechanism has shown to have increased the CIDEr score by 15%. With the use of stable dataset of MSCOCO through keras datasets, it is possible to score more on caption generation and accurate description of image
    corecore