5 research outputs found

    ALPyNA: Acceleration of Loops in Python for Novel Architectures

    Get PDF
    We present ALPyNA, an automatic loop parallelization framework for Python, which analyzes data dependences within nested loops and dynamically generates CUDA kernels for GPU execution. The ALPyNA system applies classical dependence analysis techniques to discover and exploit potential parallelism. The skeletal structure of the dependence graph is determined statically (if possible) or at runtime; this is combined with type and bounds information discovered at runtime, to auto-generate high-performance kernels for offload to GPU. We demonstrate speedups of up to 1000x relative to the native CPython interpreter across four array-intensive numerical Python benchmarks. Performance improvement is related to both iteration domain size and dependence graph complexity. Nevertheless, this approach promises to bring the benefits of manycore parallelism to application developers

    Python Programmers Have GPUs Too: Automatic Python Loop Parallelization with Staged Dependence Analysis

    Get PDF
    Python is a popular language for end-user software development in many application domains. End-users want to harness parallel compute resources effectively, by exploiting commodity manycore technology including GPUs. However, existing approaches to parallelism in Python are esoteric, and generally seem too complex for the typical end-user developer. We argue that implicit, or automatic, parallelization is the best way to deliver the benefits of manycore to end-users, since it avoids domain-specific languages, specialist libraries, complex annotations or restrictive language subsets. Auto-parallelization fits the Python philosophy, provides effective performance, and is convenient for non-expert developers. Despite being a dynamic language, we show that Python is a suitable target for auto-parallelization. In an empirical study of 3000+ open-source Python notebooks, we demonstrate that typical loop behaviour ‘in the wild’ is amenable to auto-parallelization. We show that staging the dependence analysis is an effective way to maximize performance. We apply classical dependence analysis techniques, then leverage the Python runtime’s rich introspection capabilities to resolve additional loop bounds and variable types in a just-in-time manner. The parallel loop nest code is then converted to CUDA kernels for GPU execution. We achieve orders of magnitude speedup over baseline interpreted execution and some speedup (up to 50x, although not consistently) over CPU JIT-compiled execution, across 12 loop-intensive standard benchmarks

    Python Programmers Have GPUs Too: Automatic Python Loop Parallelization with Staged Dependence Analysis

    Get PDF
    Python is a popular language for end-user software development in many application domains. End-users want to harness parallel compute resources effectively, by exploiting commodity manycore technology including GPUs. However, existing approaches to parallelism in Python are esoteric, and generally seem too complex for the typical end-user developer. We argue that implicit, or automatic, parallelization is the best way to deliver the benefits of manycore to end-users, since it avoids domain-specific languages, specialist libraries, complex annotations or restrictive language subsets. Auto-parallelization fits the Python philosophy, provides effective performance, and is convenient for non-expert developers. Despite being a dynamic language, we show that Python is a suitable target for auto-parallelization. In an empirical study of 3000+ open-source Python notebooks, we demonstrate that typical loop behaviour ‘in the wild’ is amenable to auto-parallelization. We show that staging the dependence analysis is an effective way to maximize performance. We apply classical dependence analysis techniques, then leverage the Python runtime’s rich introspection capabilities to resolve additional loop bounds and variable types in a just-in-time manner. The parallel loop nest code is then converted to CUDA kernels for GPU execution. We achieve orders of magnitude speedup over baseline interpreted execution and some speedup (up to 50x, although not consistently) over CPU JIT-compiled execution, across 12 loop-intensive standard benchmarks

    Eye Diagram Assessment Platform for Fiber-Optic Communications

    Get PDF
    The basic idea of this thesis is to provide a simple, easy to use and cost-effective eye-diagram analysis kit for educational lab environment. Mostly eye-diagram analysis is done on high-end oscilloscopes or with LabView as a source-code; this research uses Flashy board (Pluto 3 and ADC) a small FPGA kit from a company called KNJN, for acquiring signals and then gives those signals to python for analysis. The main reason for considering Flashy board was because it was cost-effective, and it operates in our frequency range of operation i.e. between 10MHz to 100MHz. This thesis is developed with python as the main source language for doing the analysis, which not only reduces the cost as it is open-source, but it also adds flexibility in the analysis with the help of which we can add many more features to the current setup. There are 2 main parts to this thesis code i.e. eye-diagram construction and eye-diagram analysis, which I have both done with the help of python. Along with providing the results for eye-diagram analysis and comparing it with the existing system, this research also tends to focus on the effect of changing certain parameters during eye-diagram analysis and provides some recommendations for those parameters

    Automated optimization of reconfigurable designs

    Get PDF
    Currently, the optimization of reconfigurable design parameters is typically done manually and often involves substantial amount effort. The main focus of this thesis is to reduce this effort. The designer can focus on the implementation and design correctness, leaving the tools to carry out optimization. To address this, this thesis makes three main contributions. First, we present initial investigation of reconfigurable design optimization with the Machine Learning Optimizer (MLO) algorithm. The algorithm is based on surrogate model technology and particle swarm optimization. By using surrogate models the long hardware generation time is mitigated and automatic optimization is possible. For the first time, to the best of our knowledge, we show how those models can both predict when hardware generation will fail and how well will the design perform. Second, we introduce a new algorithm called Automatic Reconfigurable Design Efficient Global Optimization (ARDEGO), which is based on the Efficient Global Optimization (EGO) algorithm. Compared to MLO, it supports parallelism and uses a simpler optimization loop. As the ARDEGO algorithm uses multiple optimization compute nodes, its optimization speed is greatly improved relative to MLO. Hardware generation time is random in nature, two similar configurations can take vastly different amount of time to generate making parallelization complicated. The novelty is efficient use of the optimization compute nodes achieved through extension of the asynchronous parallel EGO algorithm to constrained problems. Third, we show how results of design synthesis and benchmarking can be reused when a design is ported to a different platform or when its code is revised. This is achieved through the new Auto-Transfer algorithm. A methodology to make the best use of available synthesis and benchmarking results is a novel contribution to design automation of reconfigurable systems.Open Acces
    corecore