844 research outputs found

    Fuzziness-based active learning framework to enhance hyperspectral image classification performance for discriminative and generative classifiers

    Get PDF
    © 2018 Ahmad et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Hyperspectral image classification with a limited number of training samples without loss of accuracy is desirable, as collecting such data is often expensive and time-consuming. However, classifiers trained with limited samples usually end up with a large generalization error. To overcome the said problem, we propose a fuzziness-based active learning framework (FALF), in which we implement the idea of selecting optimal training samples to enhance generalization performance for two different kinds of classifiers, discriminative and generative (e.g. SVM and KNN). The optimal samples are selected by first estimating the boundary of each class and then calculating the fuzziness-based distance between each sample and the estimated class boundaries. Those samples that are at smaller distances from the boundaries and have higher fuzziness are chosen as target candidates for the training set. Through detailed experimentation on three publically available datasets, we showed that when trained with the proposed sample selection framework, both classifiers achieved higher classification accuracy and lower processing time with the small amount of training data as opposed to the case where the training samples were selected randomly. Our experiments demonstrate the effectiveness of our proposed method, which equates favorably with the state-of-the-art methods

    Challenges and Opportunities in Machine-Augmented Plant Stress Phenotyping

    Get PDF
    Plant stress phenotyping is essential to select stress-resistant varieties and develop better stress-management strategies. Standardization of visual assessments and deployment of imaging techniques have improved the accuracy and reliability of stress assessment in comparison with unaided visual measurement. The growing capabilities of machine learning (ML) methods in conjunction with image-based phenotyping can extract new insights from curated, annotated, and high-dimensional datasets across varied crops and stresses. We propose an overarching strategy for utilizing ML techniques that methodically enables the application of plant stress phenotyping at multiple scales across different types of stresses, program goals, and environments

    Stochastic Perturbations on Low-Rank Hyperspectral Data for Image Classification

    Get PDF
    Hyperspectral imagery (HSI) contains hundreds of narrow contiguous bands of spectral signals. These signals, which form spectral signatures, provide a wealth of information that can be used to characterize material substances. In recent years machine learning has been used extensively to classify HSI data. While many excellent HSI classifiers have been proposed and deployed, the focus has been more on the design of the algorithms. This paper presents a novel data preprocessing method (LRSP) to improve classification accuracy by applying stochastic perturbations to the low-rank constituent of the dataset. The proposed architecture is composed of a low-rank and sparse decomposition, a degradation function and a constraint least squares filter. Experimental results confirm that popular state-of-the-art HSI classifiers can produce better classification results if supplied by LRSP-altered datasets rather than the original HSI datasets.

    Multiscale spatial-spectral convolutional network with image-based framework for hyperspectral imagery classification.

    Get PDF
    Jointly using spatial and spectral information has been widely applied to hyperspectral image (HSI) classification. Especially, convolutional neural networks (CNN) have gained attention in recent years due to their detailed representation of features. However, most of CNN-based HSI classification methods mainly use patches as input classifier. This limits the range of use for spatial neighbor information and reduces processing efficiency in training and testing. To overcome this problem, we propose an image-based classification framework that is efficient and straight forward. Based on this framework, we propose a multiscale spatial-spectral CNN for HSIs (HyMSCN) to integrate both multiple receptive fields fused features and multiscale spatial features at different levels. The fused features are exploited using a lightweight block called the multiple receptive field feature block (MRFF), which contains various types of dilation convolution. By fusing multiple receptive field features and multiscale spatial features, the HyMSCN has comprehensive feature representation for classification. Experimental results from three real hyperspectral images prove the efficiency of the proposed framework. The proposed method also achieves superior performance for HSI classification

    Deep learning in food category recognition

    Get PDF
    Integrating artificial intelligence with food category recognition has been a field of interest for research for the past few decades. It is potentially one of the next steps in revolutionizing human interaction with food. The modern advent of big data and the development of data-oriented fields like deep learning have provided advancements in food category recognition. With increasing computational power and ever-larger food datasets, the approach’s potential has yet to be realized. This survey provides an overview of methods that can be applied to various food category recognition tasks, including detecting type, ingredients, quality, and quantity. We survey the core components for constructing a machine learning system for food category recognition, including datasets, data augmentation, hand-crafted feature extraction, and machine learning algorithms. We place a particular focus on the field of deep learning, including the utilization of convolutional neural networks, transfer learning, and semi-supervised learning. We provide an overview of relevant studies to promote further developments in food category recognition for research and industrial applicationsMRC (MC_PC_17171)Royal Society (RP202G0230)BHF (AA/18/3/34220)Hope Foundation for Cancer Research (RM60G0680)GCRF (P202PF11)Sino-UK Industrial Fund (RP202G0289)LIAS (P202ED10Data Science Enhancement Fund (P202RE237)Fight for Sight (24NN201);Sino-UK Education Fund (OP202006)BBSRC (RM32G0178B8

    Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review

    Get PDF
    Modern hyperspectral imaging systems produce huge datasets potentially conveying a great abundance of information; such a resource, however, poses many challenges in the analysis and interpretation of these data. Deep learning approaches certainly offer a great variety of opportunities for solving classical imaging tasks and also for approaching new stimulating problems in the spatial–spectral domain. This is fundamental in the driving sector of Remote Sensing where hyperspectral technology was born and has mostly developed, but it is perhaps even more true in the multitude of current and evolving application sectors that involve these imaging technologies. The present review develops on two fronts: on the one hand, it is aimed at domain professionals who want to have an updated overview on how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, we want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields other than Remote Sensing are the original contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends

    Sustainable Agriculture and Advances of Remote Sensing (Volume 1)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publishing the results, among others

    CLASSIFICATION BASED ON SEMI-SUPERVISED LEARNING: A REVIEW

    Get PDF
    Semi-supervised learning is the class of machine learning that deals with the use of supervised and unsupervised learning to implement the learning process. Conceptually placed between labelled and unlabeled data. In certain cases, it enables the large numbers of unlabeled data required to be utilized in comparison with usually limited collections of labeled data. In standard classification methods in machine learning, only a labeled collection is used to train the classifier. In addition, labelled instances are difficult to acquire since they necessitate the assistance of annotators, who serve in an occupation that is identified by their label. A complete audit without a supervisor is fairly easy to do, but nevertheless represents a significant risk to the enterprise, as there have been few chances to safely experiment with it so far. By utilizing a large number of unsupervised inputs along with the supervised inputs, the semi-supervised learning solves this issue, to create a good training sample. Since semi-supervised learning requires fewer human effort and allows greater precision, both theoretically or in practice, it is of critical interest

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes
    • …
    corecore