3 research outputs found

    Moving object detection via TV-L1 optical flow in fall-down videos

    Get PDF
    There is a growing demand for surveillance systems that can detect fall-down events because of the increased number of surveillance cameras being installed in many public indoor and outdoor locations. Fall-down event detection has been vigorously and extensively researched for safety purposes, particularly to monitor elderly peoples, patients, and toddlers. This computer vision detector has become more affordable with the development of high-speed computer networks and low-cost video cameras. This paper proposes moving object detection method based on human motion analysis for human fall-down events. The method comprises of three parts, which are preprocessing part to reduce image noises, motion detection part by using TV-L1 optical flow algorithm, and performance measure part. The last part will analyze the results of the object detection part in term of the bounding boxes, which are compared with the given ground truth. The proposed method is tested on Fall Down Detection (FDD) dataset and compared with Gunnar-Farneback optical flow by measuring intersection over union (IoU) of the output with respect to the ground truth bounding box. The experimental results show that the proposed method achieves an average IoU of 0.92524

    Comprehensive review of vision-based fall detection systems

    Get PDF
    Vision-based fall detection systems have experienced fast development over the last years. To determine the course of its evolution and help new researchers, the main audience of this paper, a comprehensive revision of all published articles in the main scientific databases regarding this area during the last five years has been made. After a selection process, detailed in the Materials and Methods Section, eighty-one systems were thoroughly reviewed. Their characterization and classification techniques were analyzed and categorized. Their performance data were also studied, and comparisons were made to determine which classifying methods best work in this field. The evolution of artificial vision technology, very positively influenced by the incorporation of artificial neural networks, has allowed fall characterization to become more resistant to noise resultant from illumination phenomena or occlusion. The classification has also taken advantage of these networks, and the field starts using robots to make these systems mobile. However, datasets used to train them lack real-world data, raising doubts about their performances facing real elderly falls. In addition, there is no evidence of strong connections between the elderly and the communities of researchers

    Human Activity Recognition and Fall Detection Using Unobtrusive Technologies

    Full text link
    As the population ages, health issues like injurious falls demand more attention. Wearable devices can be used to detect falls. However, despite their commercial success, most wearable devices are obtrusive, and patients generally do not like or may forget to wear them. In this thesis, a monitoring system consisting of two 24×32 thermal array sensors and a millimetre-wave (mmWave) radar sensor was developed to unobtrusively detect locations and recognise human activities such as sitting, standing, walking, lying, and falling. Data were collected by observing healthy young volunteers simulate ten different scenarios. The optimal installation position of the sensors was initially unknown. Therefore, the sensors were mounted on a side wall, a corner, and on the ceiling of the experimental room to allow performance comparison between these sensor placements. Every thermal frame was converted into an image and a set of features was manually extracted or convolutional neural networks (CNNs) were used to automatically extract features. Applying a CNN model on the infrared stereo dataset to recognise five activities (falling plus lying on the floor, lying in bed, sitting on chair, sitting in bed, standing plus walking), overall average accuracy and F1-score were 97.6%, and 0.935, respectively. The scores for detecting falling plus lying on the floor from the remaining activities were 97.9%, and 0.945, respectively. When using radar technology, the generated point clouds were converted into an occupancy grid and a CNN model was used to automatically extract features, or a set of features was manually extracted. Applying several classifiers on the manually extracted features to detect falling plus lying on the floor from the remaining activities, Random Forest (RF) classifier achieved the best results in overhead position (an accuracy of 92.2%, a recall of 0.881, a precision of 0.805, and an F1-score of 0.841). Additionally, the CNN model achieved the best results (an accuracy of 92.3%, a recall of 0.891, a precision of 0.801, and an F1-score of 0.844), in overhead position and slightly outperformed the RF method. Data fusion was performed at a feature level, combining both infrared and radar technologies, however the benefit was not significant. The proposed system was cost, processing time, and space efficient. The system with further development can be utilised as a real-time fall detection system in aged care facilities or at homes of older people
    corecore