9 research outputs found

    Decay Rate Estimators and Their Performance for Blind Reverberation Time Estimation

    Full text link

    Reverberation: models, estimation and application

    No full text
    The use of reverberation models is required in many applications such as acoustic measurements, speech dereverberation and robust automatic speech recognition. The aim of this thesis is to investigate different models and propose a perceptually-relevant reverberation model with suitable parameter estimation techniques for different applications. Reverberation can be modelled in both the time and frequency domain. The model parameters give direct information of both physical and perceptual characteristics. These characteristics create a multidimensional parameter space of reverberation, which can be to a large extent captured by a time-frequency domain model. In this thesis, the relationship between physical and perceptual model parameters will be discussed. In the first application, an intrusive technique is proposed to measure the reverberation or reverberance, perception of reverberation and the colouration. The room decay rate parameter is of particular interest. In practical applications, a blind estimate of the decay rate of acoustic energy in a room is required. A statistical model for the distribution of the decay rate of the reverberant signal named the eagleMax distribution is proposed. The eagleMax distribution describes the reverberant speech decay rates as a random variable that is the maximum of the room decay rates and anechoic speech decay rates. Three methods were developed to estimate the mean room decay rate from the eagleMax distributions alone. The estimated room decay rates form a reverberation model that will be discussed in the context of room acoustic measurements, speech dereverberation and robust automatic speech recognition individually

    A hybrid method for impulse response measurements with synthesized musical tones and Masked-MLS Stimuli

    Get PDF
    Impulse responses or transfer functions are descriptions of acoustic and audio transmission channels, which completely characterise point-to-point propagation of sound in room acoustics or input-output relationships of linear systems in electroacoustics. Measurements of impulse responses or transfer functions are routinely carried out first to determine critical room acoustics parameters of enclosures such as concert halls, theatres and auditoria, or technical specification of electroacoustic transducers, i.e. loudspeakers and microphones. In room acoustics measurements, tradition techniques employ noisy testing signals as probe stimuli, which are unpleasant and intolerable to audiences. This hinders occupied measurements to be taken in many cases. Predicted in-use parameters from unoccupied measurements are known to be unreliable and problematic. It is also well appreciated in room acoustics research community that the use of musical or music-masked probe stimuli can mitigate problems of occupied measurements. It is therefore hypothesised as a starting point of this thesis that the use of musical tone like stimuli or musically masked testing signals can be used to determine impulse responses or transfer functions. Based on the above hypothesis, this thesis develops a new hybrid technique, in which narrow band linear chirps, called “presto-chirps” centred on musical notes are used to measure impulse responses in low to mid frequency bands, and music-masked maximum-length-sequences are deployed to obtain those in higher frequency bands. Broadband impulse responses are then obtained by combining the measured lower and higher frequency impulse responses. To test the hypothesis and identify the potential and limitations of the developed technique, mathematical formulation and analysis, computer simulations and real room measurements have been carried out and documented in this thesis. Investigation results show that purposely tailored and windowed narrow chirps that emulate musical tones can be used as probe stimuli to measure impulse responses or transfer functions with an uncompromised accuracy. It is found that Hanning windows are almost optimal for this application. This method covers frequency ranges commonly quoted in room acoustics investigations. Music-masked maximum-length sequences are found to be able to obtain in impulse responses or transfer functions in higher frequency. However, if completely masked stimuli are sought, the resulted signal to noise ratios in the measurements is limited, or the required averaging is going to be overly prolonged. Nevertheless, the masking music can still potentially be used as a distracter to make the audience more forgiving to the hissing noise from maximum length sequences, facilitating the occupied measurements

    Blind estimation of room acoustic parameters from speech and music signals

    Get PDF
    The acoustic character of a space is often quantified using objective room acoustic parameters. The measurement of these parameters is difficult in occupied conditions and thus measurements are usually performed when the space is un-occupied. This is despite the knowledge that occupancy can impact significantly on the measured parameter value. Within this thesis new methods are developed by which naturalistic signals such as speech and music can be used to perform acoustic parameter measurement. Adoption of naturalistic signals enables passive measurement during orchestral performances and spoken announcements, thus facilitating easy in-situ measurement. Two methods are described within this work; (1) a method utilising artificial neural networks where a network is taught to recognise acoustic parameters from received, reverberated signals and (2) a method based on the maximum likelihood estimation of the decay curve of the room from which parameters are then calculated. (1) The development of the neural network method focuses on a new pre-processor for use with music signals. The pre-processor utilises a narrow band filter bank with centre frequencies chosen based on the equal temperament scale. The success of a machine learning method is linked to the quality of the training data and therefore realistic acoustic simulation algorithms were used to generate a large database of room impulse responses. Room models were defined with realistic randomly generated geometries and surface properties; these models were then used to predict the room impulse responses. (2) In the second approach, a statistical model of the decay of sound in a room was further developed. This model uses a maximum likelihood (ML) framework to yield a number of decay curve estimates from a received reverberant signal. The success of the method depends on a number of stages developed for the algorithm; (a) a pre-processor to select appropriate decay phases for estimation purposes, (b) a rigorous optimisation algorithm to ensure the correct maximum likelihood estimate is found and (c) a method to yield a single optimum decay curve estimate from which the parameters are calculated. The ANN and ML methods were tested using orchestral music and speech signals. The ANN method tended to perform well when estimating the early decay time (EDT), for speech and music signals the error was within the subjective difference limens. However, accuracy was reduced for the reverberation time (Rt) and other parameters. By contrast the ML method performed well for Rt with results for both speech and music within the difference limens for reasonable (<4s) reverberation time. In addition reasonable accuracy was found for EDT, Clarity (C80), Centre time (Ts) and Deutichkeit (D). The ML method is also capable of producing accurate estimates of the binaural parameters Early Lateral Energy Fraction (LEF) and the late lateral strength (LG). A number of real world measurements were carried out in concert halls where the ML accuracy was shown to be sufficient for most parameters. The ML method has the advantage over the ANN method due to its truly blind nature (the ANN method requires a period of learning and is therefore semi-blind). The ML method uses gaps of silence between notes or utterances, when these silence regions are not present the method does not produce an estimate. Accurate estimation requires a long recording (hours of music or many minutes of speech) to ensure that at least some silent regions are present. This thesis shows that, given a sufficiently long recording, accurate estimates of many acoustic parameters can be obtained directly from speech and music. Further extensions to the ML method detailed in this thesis combine the ML estimated decay curve with cepstral methods which detect the locations of early reflections. This improves the accuracy of many of the parameter estimates.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Blind estimation of room acoustic parameters from speech and music signals

    Get PDF
    The acoustic character of a space is often quantified using objective room acoustic parameters. The measurement of these parameters is difficult in occupied conditions and thus measurements are usually performed when the space is un-occupied. This is despite the knowledge that occupancy can impact significantly on the measured parameter value. Within this thesis new methods are developed by which naturalistic signals such as speech and music can be used to perform acoustic parameter measurement. Adoption of naturalistic signals enables passive measurement during orchestral performances and spoken announcements, thus facilitating easy in-situ measurement.Two methods are described within this work; (1) a method utilising artificial neural networks where a network is taught to recognise acoustic parameters from received, reverberated signals and (2) a method based on the maximum likelihood estimation of the decay curve of the room from which parameters are then calculated. (1)The development of the neural network method focuses on a new pre-processor for use with music signals. The pre-processor utilises a narrow band filter bank with centre frequencies chosen based on the equal temperament scale. The success of a machine learning method is linked to the quality of the training data and therefore realistic acoustic simulation algorithms were used to generate a large database of room impulse responses. Room models were defined with realistic randomly generated geometries and surface properties; these models were then used to predict the room impulse responses.(2)In the second approach, a statistical model of the decay of sound in a room was further developed. This model uses a maximum likelihood (ML) framework to yield a number of decay curve estimates from a received reverberant signal. The success of the method depends on a number of stages developed for the algorithm; (a) a pre-processor to select appropriate decay phases for estimation purposes, (b) a rigorous optimisation algorithm to ensure the correct maximum likelihood estimate is found and (c) a method to yield a single optimum decay curve estimate from which the parameters are calculated.The ANN and ML methods were tested using orchestral music and speech signals. The ANN method tended to perform well when estimating the early decay time (EDT), for speech and music signals the error was within the subjective difference limens. However, accuracy was reduced for the reverberation time (Rt) and other parameters. By contrast the ML method performed well for Rt with results for both speech and music within the difference limens for reasonable (<4s) reverberation time. In addition reasonable accuracy was found for EDT, Clarity (C80), Centre time (Ts) and Deutichkeit (D). The ML method is also capable of producing accurate estimates of the binaural parameters Early Lateral Energy Fraction (LEF) and the late lateral strength (LG).A number of real world measurements were carried out in concert halls where the ML accuracy was shown to be sufficient for most parameters. The ML method has the advantage over the ANN method due to its truly blind nature (the ANN method requires a period of learning and is therefore semi-blind). The ML method uses gaps of silence between notes or utterances, when these silence regions are not present the method does not produce an estimate. Accurate estimation requires a long recording (hours of music or many minutes of speech) to ensure that at least some silent regions are present. This thesis shows that, given a sufficiently long recording, accurate estimates of many acoustic parameters can be obtained directly from speech and music.Further extensions to the ML method detailed in this thesis combine the ML estimated decay curve with cepstral methods which detect the locations of early reflections. This improves the accuracy of many of the parameter estimates
    corecore