755 research outputs found

    Ganalyzer: A tool for automatic galaxy image analysis

    Full text link
    We describe Ganalyzer, a model-based tool that can automatically analyze and classify galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large datasets of galaxy images collected by autonomous sky surveys such as SDSS, LSST or DES. The software is available for free download at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer, and the data used in the experiment are available at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer/GalaxyImages.zip.Comment: ApJ, accepte

    Automatic quantitative morphological analysis of interacting galaxies

    Full text link
    The large number of galaxies imaged by digital sky surveys reinforces the need for computational methods for analyzing galaxy morphology. While the morphology of most galaxies can be associated with a stage on the Hubble sequence, morphology of galaxy mergers is far more complex due to the combination of two or more galaxies with different morphologies and the interaction between them. Here we propose a computational method based on unsupervised machine learning that can quantitatively analyze morphologies of galaxy mergers and associate galaxies by their morphology. The method works by first generating multiple synthetic galaxy models for each galaxy merger, and then extracting a large set of numerical image content descriptors for each galaxy model. These numbers are weighted using Fisher discriminant scores, and then the similarities between the galaxy mergers are deduced using a variation of Weighted Nearest Neighbor analysis such that the Fisher scores are used as weights. The similarities between the galaxy mergers are visualized using phylogenies to provide a graph that reflects the morphological similarities between the different galaxy mergers, and thus quantitatively profile the morphology of galaxy mergers.Comment: Astronomy & Computing, accepte

    New Image Statistics for Detecting Disturbed Galaxy Morphologies at High Redshift

    Get PDF
    Testing theories of hierarchical structure formation requires estimating the distribution of galaxy morphologies and its change with redshift. One aspect of this investigation involves identifying galaxies with disturbed morphologies (e.g., merging galaxies). This is often done by summarizing galaxy images using, e.g., the CAS and Gini-M20 statistics of Conselice (2003) and Lotz et al. (2004), respectively, and associating particular statistic values with disturbance. We introduce three statistics that enhance detection of disturbed morphologies at high-redshift (z ~ 2): the multi-mode (M), intensity (I), and deviation (D) statistics. We show their effectiveness by training a machine-learning classifier, random forest, using 1,639 galaxies observed in the H band by the Hubble Space Telescope WFC3, galaxies that had been previously classified by eye by the CANDELS collaboration (Grogin et al. 2011, Koekemoer et al. 2011). We find that the MID statistics (and the A statistic of Conselice 2003) are the most useful for identifying disturbed morphologies. We also explore whether human annotators are useful for identifying disturbed morphologies. We demonstrate that they show limited ability to detect disturbance at high redshift, and that increasing their number beyond approximately 10 does not provably yield better classification performance. We propose a simulation-based model-fitting algorithm that mitigates these issues by bypassing annotation.Comment: 15 pages, 14 figures, accepted for publication in MNRA

    Automatic morphological classification of galaxy images

    Full text link
    We describe an image analysis supervised learning algorithm that can automatically classify galaxy images. The algorithm is first trained using a manually classified images of elliptical, spiral, and edge-on galaxies. A large set of image features is extracted from each image, and the most informative features are selected using Fisher scores. Test images can then be classified using a simple Weighted Nearest Neighbor rule such that the Fisher scores are used as the feature weights. Experimental results show that galaxy images from Galaxy Zoo can be classified automatically to spiral, elliptical and edge-on galaxies with accuracy of ~90% compared to classifications carried out by the author. Full compilable source code of the algorithm is available for free download, and its general-purpose nature makes it suitable for other uses that involve automatic image analysis of celestial objects.Comment: Accepted for publication in MNRA
    • …
    corecore