342 research outputs found

    Automated segmentation and analysis of normal and osteoarthritic knee menisci from magnetic resonance images: data from the Osteoarthritis Initiative

    Get PDF
    OBJECTIVE: To validate an automatic scheme for the segmentation and quantitative analysis of the medial meniscus (MM) and lateral meniscus (LM) in magnetic resonance (MR) images of the knee

    Artificial intelligence for MRI diagnosis of joints: a scoping review of the current state-of-the-art of deep learning-based approaches

    Full text link
    Deep learning-based MRI diagnosis of internal joint derangement is an emerging field of artificial intelligence, which offers many exciting possibilities for musculoskeletal radiology. A variety of investigational deep learning algorithms have been developed to detect anterior cruciate ligament tears, meniscus tears, and rotator cuff disorders. Additional deep learning-based MRI algorithms have been investigated to detect Achilles tendon tears, recurrence prediction of musculoskeletal neoplasms, and complex segmentation of nerves, bones, and muscles. Proof-of-concept studies suggest that deep learning algorithms may achieve similar diagnostic performances when compared to human readers in meta-analyses; however, musculoskeletal radiologists outperformed most deep learning algorithms in studies including a direct comparison. Earlier investigations and developments of deep learning algorithms focused on the binary classification of the presence or absence of an abnormality, whereas more advanced deep learning algorithms start to include features for characterization and severity grading. While many studies have focused on comparing deep learning algorithms against human readers, there is a paucity of data on the performance differences of radiologists interpreting musculoskeletal MRI studies without and with artificial intelligence support. Similarly, studies demonstrating the generalizability and clinical applicability of deep learning algorithms using realistic clinical settings with workflow-integrated deep learning algorithms are sparse. Contingent upon future studies showing the clinical utility of deep learning algorithms, artificial intelligence may eventually translate into clinical practice to assist detection and characterization of various conditions on musculoskeletal MRI exams

    Improving MRI-based Knee Disorder Diagnosis with Pyramidal Feature Details

    Get PDF
    This paper presents MRPyrNet, a new convolutional neural network (CNN) architecture that improves the capabilities of CNN-based pipelines for knee injury detection via magnetic resonance imaging (MRI). Existing works showed that anomalies are localized in small-sized knee regions that appear in particular areas of MRI scans. Based on such facts, MRPyrNet exploits a Feature Pyramid Network to enhance small appearing features and Pyramidal Detail Pooling to capture such relevant information in a robust way. Experimental results on two publicly available datasets demonstrate that MRPyrNet improves the ACL tear and meniscal tear diagnosis capabilities of two state-of-the-art methodologies. Code is available at https://git.io/JtMPH

    Structural features of early-stage OA:Keep your menisci in good shape

    Get PDF

    Quantification of Structure from Medical Images

    Get PDF

    Structural features of early-stage OA:Keep your menisci in good shape

    Get PDF
    • …
    corecore